问题如下图:
选项:
A.
B.
C.
解释:
学费难道不是先交钱再上学?????应该是18年初也就是17年末付费吧。。。。还是觉得应该选B 啊
Olive_品职助教 · 2019年08月18日
同学你好,题目说first payment due in 18 years,这个英文的表达就是在说t=18的时候付第一笔payment,如果比较难理解的话我们可以简化一下,假如题目说的是first payment due in 1 year,是不是很容易能判断出是在t=1的时点,而不是t=0时点,所以把1改成18,就是t=18时点。
另外,这道题的关键就是判断第一笔payment的时点,至于先付还是后付并不重要。
当成先付来做的话,就用BGN模式把四笔现金流都折到t=18时点,然后再往前折18年,可以得到PV。
如果当成后付,那么就用END模式折到t=17时点,然后再往前折17年,答案是一样的。
加油哦!
NO.PZ2017092702000014 问题如下 Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to: A.$60,699. B.$64,341. C.$68,201. B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0=(1+0.06)17FV=(1+0.06)17173,255.28PV0 = $64,340.85 ≈ $64,341. 173255.28我能算出来 但为什么下一步时间是17 不是18
NO.PZ2017092702000014 问题如下 Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to: A.$60,699. B.$64,341. C.$68,201. B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0=(1+0.06)17FV=(1+0.06)17173,255.28PV0 = $64,340.85 ≈ $64,341. N=18, I/Y= 6, PMT=0, FV = 200000 这样哪里错了
NO.PZ2017092702000014问题如下Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to:A.$60,699.B.$64,341.C.$68,201.B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0=(1+0.06)17FV=(1+0.06)17173,255.28PV0 = $64,340.85 ≈ $64,341.first payment e,这里的e不是先付吗?如果不是,那么 题干一般如何表达先付呢?
NO.PZ2017092702000014 问题如下 Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to: A.$60,699. B.$64,341. C.$68,201. B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0=(1+0.06)17FV=(1+0.06)17173,255.28PV0 = $64,340.85 ≈ $64,341. 第一步, PMT=50000,N=4,I/Y=6,FV=0,算出PV,用算出的PV值再乘以(1+I/Y),这个就是后面要求的值的FV第二步,用上面最终求得的值作为FV,PMT=0,N=18,I/Y=6,求PV这里第二步的N是不是就应该用18来算?
NO.PZ2017092702000014问题如下Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to:A.$60,699.B.$64,341.C.$68,201.B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0=(1+0.06)17FV=(1+0.06)17173,255.28PV0 = $64,340.85 ≈ $64,341.老师,学费不是都应该先付吗?这个不按照常识处理吗?另外,如果,18时点开始的payment 是先付,是不是答案就是C啊?,折到17年初,也就是16年末是173255。