开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

elle86 · 2019年08月02日

问一道题:NO.PZ2017092702000029 [ CFA I ]每年的return是不是现金流?

这题现金流为什么不是CF0=-1000; CF1=-4000+1000*15%; CF2=-45000+5000*14%; CF3=50000*0.96=48000;IRR-CPT-IRR=-2.09%。每年的return是不是现金流?

问题如下图:

选项:

A.

B.

C.

解释:

2 个答案

简ying · 2019年08月17日

同学,我当时也有这种迷惑,现在试着解释一下吧。计算MWRR重点是找出各期的现金流入和流出,在第一年末初始投资取得的收益是继续滚动在投资里并未提取出来的,不能算现金流出,这个和股票的dividend不同,因此只关注第三年末各期投资的终值即可。

Olive_品职助教 · 2019年08月02日

同学你好,IRR看的是cash flow,也就是每个时点投入或者拿出的钱,而你算的是一个balance账户余额的概念。打个比方吧,你可以想象一下银行存钱的情景,每年新往里存的钱是cash flow,存钱的时候顺便看一下账户余额,这个余额不是cash flow,然后到期末,把账户里的钱都取出来,取出来的所有钱,是cash flow,IRR是使你每期往里存的钱和最后拿到的钱相等的收益率。

IRR只看投入的钱,和最终投资的结果,中间的生息是不考虑的,你每期加的 1000*15% 这种并不是cash flow 。或者换个角度思考,实际上是,1000、4000、45000是种瓜,而1258+4337.6+43200是得豆,IRR就是使得两者相等的那个收益率,这个过程中不应该再掺和其他收益率了,否则就考虑了两遍收益率。你可以多做做IRR的题感觉一下,加油哦!

  • 2

    回答
  • 1

    关注
  • 377

    浏览
相关问题

NO.PZ2017092702000029问题如下A funreceives investments the beginning of eayeangenerates returns shown in the table. Whireturn measure over the three-yeperiois negative?A.Geometric mereturn B.Time-weighterate of return C.Money-weighterate of returnC is correct. The money-weighterate of return consirs both the timing anamounts of investments into the fun The investment the beginning of Ye1 will worth $1,000(1.15)(1.14)(0.96) = $1,258.56 the enof Ye3. The investment ma the beginning of Ye2 will worth $4,377.60 = $4,000(1.14)(0.96) the enof Ye3. The investment of $45,000 the beginning of Ye3 creases to a value of $45,000 (0.96) = $43,200 the enof Ye3. Solving for r,1,000+4,0001+r+45,000(1+r)2=1,258+4,337.60+43,200(1+r)31,000+\frac{4,000}{1+r}+\frac{45,000}{{(1+r)}^2}=\frac{1,258+4,337.60+43,200}{{(1+r)}^3}1,000+1+r4,000​+(1+r)245,000​=(1+r)31,258+4,337.60+43,200​results in r = –2.08%Note thB is incorrebecause the time-weighterate of return (TWR) of the funis the same the geometric mereturn of the funanis thus positive: TWR = √ 3 (1.15) (1.14) (0.96) - 1 = 7.97%跟答案完全不一样?可以告知我这算的是啥吗。。。蒙的

2024-02-26 16:08 1 · 回答

NO.PZ2017092702000029 问题如下 A funreceives investments the beginning of eayeangenerates returns shown in the table. Whireturn measure over the three-yeperiois negative? A.Geometric mereturn B.Time-weighterate of return C.Money-weighterate of return C is correct. The money-weighterate of return consirs both the timing anamounts of investments into the fun The investment the beginning of Ye1 will worth $1,000(1.15)(1.14)(0.96) = $1,258.56 the enof Ye3. The investment ma the beginning of Ye2 will worth $4,377.60 = $4,000(1.14)(0.96) the enof Ye3. The investment of $45,000 the beginning of Ye3 creases to a value of $45,000 (0.96) = $43,200 the enof Ye3. Solving for r,1,000+4,0001+r+45,000(1+r)2=1,258+4,337.60+43,200(1+r)31,000+\frac{4,000}{1+r}+\frac{45,000}{{(1+r)}^2}=\frac{1,258+4,337.60+43,200}{{(1+r)}^3}1,000+1+r4,000​+(1+r)245,000​=(1+r)31,258+4,337.60+43,200​results in r = –2.08%Note thB is incorrebecause the time-weighterate of return (TWR) of the funis the same the geometric mereturn of the funanis thus positive: TWR = √ 3 (1.15) (1.14) (0.96) - 1 = 7.97% 计算器一直报error 5

2023-04-16 14:00 1 · 回答

NO.PZ2017092702000029 问题如下 A funreceives investments the beginning of eayeangenerates returns shown in the table. Whireturn measure over the three-yeperiois negative? A.Geometric mereturn B.Time-weighterate of return C.Money-weighterate of return C is correct. The money-weighterate of return consirs both the timing anamounts of investments into the fun The investment the beginning of Ye1 will worth $1,000(1.15)(1.14)(0.96) = $1,258.56 the enof Ye3. The investment ma the beginning of Ye2 will worth $4,377.60 = $4,000(1.14)(0.96) the enof Ye3. The investment of $45,000 the beginning of Ye3 creases to a value of $45,000 (0.96) = $43,200 the enof Ye3. Solving for r,1,000+4,0001+r+45,000(1+r)2=1,258+4,337.60+43,200(1+r)31,000+\frac{4,000}{1+r}+\frac{45,000}{{(1+r)}^2}=\frac{1,258+4,337.60+43,200}{{(1+r)}^3}1,000+1+r4,000​+(1+r)245,000​=(1+r)31,258+4,337.60+43,200​results in r = –2.08%Note thB is incorrebecause the time-weighterate of return (TWR) of the funis the same the geometric mereturn of the funanis thus positive: TWR = √ 3 (1.15) (1.14) (0.96) - 1 = 7.97% 为什么最后的CF3不是45000*-4%。最后的CF3不知道原因,没有看懂是怎么求出来的

2022-12-28 15:41 2 · 回答

NO.PZ2017092702000029 问题如下 A funreceives investments the beginning of eayeangenerates returns shown in the table. Whireturn measure over the three-yeperiois negative? A.Geometric mereturn B.Time-weighterate of return C.Money-weighterate of return C is correct. The money-weighterate of return consirs both the timing anamounts of investments into the fun The investment the beginning of Ye1 will worth $1,000(1.15)(1.14)(0.96) = $1,258.56 the enof Ye3. The investment ma the beginning of Ye2 will worth $4,377.60 = $4,000(1.14)(0.96) the enof Ye3. The investment of $45,000 the beginning of Ye3 creases to a value of $45,000 (0.96) = $43,200 the enof Ye3. Solving for r,1,000+4,0001+r+45,000(1+r)2=1,258+4,337.60+43,200(1+r)31,000+\frac{4,000}{1+r}+\frac{45,000}{{(1+r)}^2}=\frac{1,258+4,337.60+43,200}{{(1+r)}^3}1,000+1+r4,000​+(1+r)245,000​=(1+r)31,258+4,337.60+43,200​results in r = –2.08%Note thB is incorrebecause the time-weighterate of return (TWR) of the funis the same the geometric mereturn of the funanis thus positive: TWR = √ 3 (1.15) (1.14) (0.96) - 1 = 7.97% 为什么客户的收益是在最后一年的cashflow里,而不是在对应的cf1、cf2、cf3?

2022-12-16 06:03 1 · 回答

NO.PZ2017092702000029 问题如下 A funreceives investments the beginning of eayeangenerates returns shown in the table. Whireturn measure over the three-yeperiois negative? A.Geometric mereturn B.Time-weighterate of return C.Money-weighterate of return C is correct. The money-weighterate of return consirs both the timing anamounts of investments into the fun The investment the beginning of Ye1 will worth $1,000(1.15)(1.14)(0.96) = $1,258.56 the enof Ye3. The investment ma the beginning of Ye2 will worth $4,377.60 = $4,000(1.14)(0.96) the enof Ye3. The investment of $45,000 the beginning of Ye3 creases to a value of $45,000 (0.96) = $43,200 the enof Ye3. Solving for r,1,000+4,0001+r+45,000(1+r)2=1,258+4,337.60+43,200(1+r)31,000+\frac{4,000}{1+r}+\frac{45,000}{{(1+r)}^2}=\frac{1,258+4,337.60+43,200}{{(1+r)}^3}1,000+1+r4,000​+(1+r)245,000​=(1+r)31,258+4,337.60+43,200​results in r = –2.08%Note thB is incorrebecause the time-weighterate of return (TWR) of the funis the same the geometric mereturn of the funanis thus positive: TWR = √ 3 (1.15) (1.14) (0.96) - 1 = 7.97% 第一种CF0=-1000, CF1=-2850, CF2=-40440, CF3=43200 IRR=-2.22第二种CF0=1000, CF1=4000, CF2=45000, CF3=-48836.16 IRR=-2.08哪一种方法是正确的?第二种方法理解不了,而且48836.16是怎么来的?

2022-04-26 11:18 5 · 回答