问题如下图:请问第1小题中求出来的1.19%,和这道题有关系么?应该怎么理解?
选项:
A.
B.
C.
解释:
NO.PZ201903040100000102 -$1,849,897. -$1,943,000. B is correct. The value of a swfrom the perspective of the receive-fixeparty is calculateV=NA(FS0−FSt)∑i=1n′PVt,tiV=NA{(FS_0-FS_t)}\sum_{i=1}^{n'}PV_{t,ti}V=NA(FS0−FSt)∑i=1n′PVt,ti The swhtwo years remaining until expiration. The sum of the present values for Years 1 an2 is ∑i=1n′PVt,ti= 0.990099 + 0.977876 = 1.967975\sum_{i=1}^{n'}PV_{t,ti}=\text{ }0.990099\text{ }+\text{ }0.977876\text{ }=\text{ }1.967975∑i=1n′PVt,ti= 0.990099 + 0.977876 = 1.967975 Given the current equilibrium two-yeswrate of 1.12% anthe fixeswrate initiation of 3.00%, the swvalue per llnotionis calculateV = (0.03 - 0.0112)1.967975 = 0.036998 The current value of the swap, from the perspective of the receive-fixeparty, is $50,000,000 x 0.036998 = $1,849,897. From the perspective of the bank, the receive-floating party, the value of the swis -$1,849,897.为什么向上箭头不是 本金+ f1
NO.PZ201903040100000102 题中条件1.12%是否只适用于重新定价时使用,如果用画图法的话,就不需要考虑这个条件呢?
NO.PZ201903040100000102 这道题可以详细解答以下吗?我没看到题目的意思
NO.PZ201903040100000102 老师,请问画图法这样算错在哪里呢?
-$1,849,897. -$1,943,000. B is correct. The value of a swfrom the perspective of the receive-fixeparty is calculateV=NA(FS0−FSt)∑i=1n′PVt,tiV=NA{(FS_0-FS_t)}\sum_{i=1}^{n'}PV_{t,ti}V=NA(FS0−FSt)∑i=1n′PVt,ti The swhtwo years remaining until expiration. The sum of the present values for Years 1 an2 is ∑i=1n′PVt,ti= 0.990099 + 0.977876 = 1.967975\sum_{i=1}^{n'}PV_{t,ti}=\text{ }0.990099\text{ }+\text{ }0.977876\text{ }=\text{ }1.967975∑i=1n′PVt,ti= 0.990099 + 0.977876 = 1.967975 Given the current equilibrium two-yeswrate of 1.12% anthe fixeswrate initiation of 3.00%, the swvalue per llnotionis calculateV = (0.03 - 0.0112)1.967975 = 0.036998 The current value of the swap, from the perspective of the receive-fixeparty, is $50,000,000 x 0.036998 = $1,849,897. From the perspective of the bank, the receive-floating party, the value of the swis -$1,849,897.不是receive float吗,那应该是(100+1.12)*0.990099-(3*0.990099+103*0.977876)吧?