开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

粉红豹 · 2019年03月20日

问一道题:NO.PZ2015121810000013

问题如下图:

    

选项:

A.

B.

C.

解释:


老师,求出来的8.11%是combined active risk吗?所以才用8.11%/8% 得到indiago portfolio 的权重,这样理解对吗?

2 个答案

Wendy_品职助教 · 2019年03月20日

同学你好,你说的对。两种计算方法都是正确的,你的方法是更加直接简单的。

答案的方法是根据SR的基础公式,一步一步计算的,有些同学可能更习惯用这种方法。我们考试解题的时候要选用我们习惯的方法。

Wendy_品职助教 · 2019年03月20日

同学你好,这样理解非常对!

粉红豹 · 2019年03月20日

但是老师,上述求解过程的后半部分求解optimal SR的过程不是很理解,为什么不直接用SR平方那个公式直接就求出来是0.365,而是这样迂回地算一圈?

  • 2

    回答
  • 1

    关注
  • 358

    浏览
相关问题

NO.PZ2015121810000013 问题如下 Whiof the following pairs of weights wouluseto achieve the highest Sharpe ratio anoptimamount of active risk through combining the Ingo Funanbenchmark portfolio, respectively? A.1.014 on Ingo an–0.014 on the benchmark B.1.450 on Ingo an–0.450 on the benchmark C.1.500 on Ingo an–0.500 on the benchmark A is correct.The optimamount of active risk is:σA=IRSRBσB=0.150.333×18%=8.11%\sigma_A=\frac{IR}{SR_B}\sigma_B=\frac{0.15}{0.333}\times18\%=8.11\%σA​=SRB​IR​σB​=0.3330.15​×18%=8.11%The weight on the active portfolio (Ingo) woul8.11%/8.0% = 1.014 anthe weight on the benchmark portfolio woul1 – 1.014 = – 0.014. 考点Optimamount of active risk解析Optimamount of active riskσA=IRSRBσB=0.150.333×18%=8.11%\sigma_A=\frac{IR}{SR_B}\sigma_B=\frac{0.15}{0.333}\times18\%=8.11\%σA​=SRB​IR​σB​=0.3330.15​×18%=8.11%Ingo Fun在的active risk是8%,为了使active risk达到最优水平,就将Ingo Funbenchmark再做组合,形成active risk最优的combinefun假设Ingo Fun权重为那么σA=cσAfun  8.11%=c8%,  c=1.014\sigma_A=c\sigma_A^{fun,\;8.11\%=c8\%,\;c=1.014σA​=cσAfun,8.11%=c8%,c=1.014因此,benchmark的权重为1-1.014=-0.014 如题

2023-11-11 20:14 1 · 回答

NO.PZ2015121810000013问题如下Whiof the following pairs of weights wouluseto achieve the highest Sharpe ratio anoptimamount of active risk through combining the Ingo Funanbenchmark portfolio, respectively?A.1.014 on Ingo an–0.014 on the benchmarkB.1.450 on Ingo an–0.450 on the benchmarkC.1.500 on Ingo an–0.500 on the benchmark A is correct.The optimamount of active risk is:σA=IRSRBσB=0.150.333×18%=8.11%\sigma_A=\frac{IR}{SR_B}\sigma_B=\frac{0.15}{0.333}\times18\%=8.11\%σA​=SRB​IR​σB​=0.3330.15​×18%=8.11%The weight on the active portfolio (Ingo) woul8.11%/8.0% = 1.014 anthe weight on the benchmark portfolio woul1 – 1.014 = – 0.014. 考点Optimamount of active risk解析Optimamount of active riskσA=IRSRBσB=0.150.333×18%=8.11%\sigma_A=\frac{IR}{SR_B}\sigma_B=\frac{0.15}{0.333}\times18\%=8.11\%σA​=SRB​IR​σB​=0.3330.15​×18%=8.11%Ingo Fun在的active risk是8%,为了使active risk达到最优水平,就将Ingo Funbenchmark再做组合,形成active risk最优的combinefun假设Ingo Fun权重为那么σA=cσAfun  8.11%=c8%,  c=1.014\sigma_A=c\sigma_A^{fun,\;8.11\%=c8\%,\;c=1.014σA​=cσAfun,8.11%=c8%,c=1.014因此,benchmark的权重为1-1.014=-0.014 大盘的SR大于单个基金的SR,要想组合SR最大就要尽可能多买大盘,ABC三个中A投资大盘的比例最高,所以选A,这样做行不行?

2023-09-12 10:27 1 · 回答

NO.PZ2015121810000013问题如下Whiof the following pairs of weights wouluseto achieve the highest Sharpe ratio anoptimamount of active risk through combining the Ingo Funanbenchmark portfolio, respectively?A.1.014 on Ingo an–0.014 on the benchmarkB.1.450 on Ingo an–0.450 on the benchmarkC.1.500 on Ingo an–0.500 on the benchmark A is correct.The optimamount of active risk is:σA=IRSRBσB=0.150.333×18%=8.11%\sigma_A=\frac{IR}{SR_B}\sigma_B=\frac{0.15}{0.333}\times18\%=8.11\%σA​=SRB​IR​σB​=0.3330.15​×18%=8.11%The weight on the active portfolio (Ingo) woul8.11%/8.0% = 1.014 anthe weight on the benchmark portfolio woul1 – 1.014 = – 0.014. 考点Optimamount of active risk解析Optimamount of active riskσA=IRSRBσB=0.150.333×18%=8.11%\sigma_A=\frac{IR}{SR_B}\sigma_B=\frac{0.15}{0.333}\times18\%=8.11\%σA​=SRB​IR​σB​=0.3330.15​×18%=8.11%Ingo Fun在的active risk是8%,为了使active risk达到最优水平,就将Ingo Funbenchmark再做组合,形成active risk最优的combinefun假设Ingo Fun权重为那么σA=cσAfun  8.11%=c8%,  c=1.014\sigma_A=c\sigma_A^{fun,\;8.11\%=c8\%,\;c=1.014σA​=cσAfun,8.11%=c8%,c=1.014因此,benchmark的权重为1-1.014=-0.014 这道题的思路是根据 sigema (portfolio+benchmark)=C*sigema portfolio这个式子算出C,然后再看是long short。有几个问题1、不太明白optimamount of active risk算出来的是sigema (portfolio+benchmark),还是sigema portfolio ?2、请问讲义244页的optimamount of active risk=12%,是sigema (portfolio+benchmark),还是sigema portfolio?是怎么看出来的?3、为什么算sigema (portfolio+benchmark)用的是 表格中return stanrviation,而算sigema portfolio用的却不是return stanrviation,而是active risk4、可以用讲义243页关于“sigema P 平方”的那个公式来算sigema portfolio吗?有点晕,求老师耐心解答,谢谢!

2023-04-24 22:30 1 · 回答

NO.PZ2015121810000013 问题如下 Whiof the following pairs of weights wouluseto achieve the highest Sharpe ratio anoptimamount of active risk through combining the Ingo Funanbenchmark portfolio, respectively? A.1.014 on Ingo an–0.014 on the benchmark B.1.450 on Ingo an–0.450 on the benchmark C.1.500 on Ingo an–0.500 on the benchmark A is correct.The optimamount of active risk is:σA=IRSRBσB=0.150.333×18%=8.11%\sigma_A=\frac{IR}{SR_B}\sigma_B=\frac{0.15}{0.333}\times18\%=8.11\%σA​=SRB​IR​σB​=0.3330.15​×18%=8.11%The weight on the active portfolio (Ingo) woul8.11%/8.0% = 1.014 anthe weight on the benchmark portfolio woul1 – 1.014 = – 0.014. 考点Optimamount of active risk解析Optimamount of active riskσA=IRSRBσB=0.150.333×18%=8.11%\sigma_A=\frac{IR}{SR_B}\sigma_B=\frac{0.15}{0.333}\times18\%=8.11\%σA​=SRB​IR​σB​=0.3330.15​×18%=8.11%Ingo Fun在的active risk是8%,为了使active risk达到最优水平,就将Ingo Funbenchmark再做组合,形成active risk最优的combinefun假设Ingo Fun权重为那么σA=cσAfun  8.11%=c8%,  c=1.014\sigma_A=c\sigma_A^{fun,\;8.11\%=c8\%,\;c=1.014σA​=cσAfun,8.11%=c8%,c=1.014因此,benchmark的权重为1-1.014=-0.014 请问求出optimactive risk 8.122% 以后为什么不用它除 portfolio 的active return viation 而是除portfolio的 active risk?风险组合的active return 的标准差和 aktive risk 有什么区别?

2022-05-15 20:43 1 · 回答

此题为什么不能通过最大的sharp ratio求解权重的,最大的sharp ratio是0.365。rf=0.03,这样算出来的权重为啥和答案不一致了?『0.105x+(1-x )0.09-0.03 』/0.25x+(1-x)0.18=0.365这样算出来的权重x为啥不对?

2020-08-22 10:32 5 · 回答