问题如下图:
选项:
A.
B.
C.
解释:
老师,为啥要加oas呢?
NO.PZ201712110200000401 问题如下 Baseon Exhibits 1 an2, the effective ration for the bonis closest to: A.1.98. B.2.15. C.2.73. B is correct. The bons value if interest rates shift wn 30 bps (PV–) is 100.78. The bons value if interest rates shift up 30 bps (PV+) is 99.487.Effective ration=[(PV-)-(PV+)]/[2× (ΔCurve) × (PV0)]= (100.780 - 99.487)/ (2 × 0.003 × 100.200)=2.15 bons value if interest rates shift wn 30 bps (PV–) 我算的不是 100.78,而是101.03854,算了两次都是这样,请问我哪里出错了?
NO.PZ201712110200000401 问题如下 Baseon Exhibits 1 an2, the effective ration for the bonis closest to: A.1.98. B.2.15. C.2.73. B is correct. The bons value if interest rates shift wn 30 bps (PV–) is 100.78. The bons value if interest rates shift up 30 bps (PV+) is 99.487.Effective ration=[(PV-)-(PV+)]/[2× (ΔCurve) × (PV0)]= (100.780 - 99.487)/ (2 × 0.003 × 100.200)=2.15 老师您好,我看原教材解析里面都懒得写计算全过程了...... 一般考试中会出现这么繁琐的计算么
NO.PZ201712110200000401问题如下Baseon Exhibits 1 an2, the effective ration for the bonis closest to:A.1.98.B.2.15.C.2.73.B is correct. The bons value if interest rates shift wn 30 bps (PV–) is 100.78. The bons value if interest rates shift up 30 bps (PV+) is 99.487.Effective ration=[(PV-)-(PV+)]/[2× (ΔCurve) × (PV0)]= (100.780 - 99.487)/ (2 × 0.003 × 100.200)=2.15对于含权债券如何判断题目给的现金流是否含权,什么时候需要在分母加oas
NO.PZ201712110200000401 问题如下 Baseon Exhibits 1 an2, the effective ration for the bonis closest to: A.1.98. B.2.15. C.2.73. B is correct. The bons value if interest rates shift wn 30 bps (PV–) is 100.78. The bons value if interest rates shift up 30 bps (PV+) is 99.487.Effective ration=[(PV-)-(PV+)]/[2× (ΔCurve) × (PV0)]= (100.780 - 99.487)/ (2 × 0.003 × 100.200)=2.15 老师上课说过,OAS是剔除了权利影响的sprea分子的现金流已经包含了权利影响了。那为什么还可以在二叉树的利率上直接加OAS,但是现金流又还是按照初始的coupon rate来计算呢?
NO.PZ201712110200000401 问题如下 Baseon Exhibits 1 an2, the effective ration for the bonis closest to: A.1.98. B.2.15. C.2.73. B is correct. The bons value if interest rates shift wn 30 bps (PV–) is 100.78. The bons value if interest rates shift up 30 bps (PV+) is 99.487.Effective ration=[(PV-)-(PV+)]/[2× (ΔCurve) × (PV0)]= (100.780 - 99.487)/ (2 × 0.003 × 100.200)=2.15 例如上图是辅导老师的解题过程,V+在year2,既然折现率4.9377%小于coupon rate,作为callable,为什么不直接取100呢而是99.7114?