问题如下图:
选项:
A.
B.
C.
D.
解释:
很多题目中都不说明是连续的还是离散的,怎么判断是用连续型公式还是离散型公式?
NO.PZ2016082402000001 问题如下 investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR). A.17.0% B.15.8% C.13.0% 11.6% ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV)T1−1 E= . Here, T = 1/12. So, E= (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000)12−1=17.0% EAR和BEY在讲义的哪个地方,找不到了
NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV)T1−1 E= . Here, T = 1/12. So, E= (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000)12−1=17.0%为什么不是(1+R/12)=1000/987
NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV)T1−1 E= . Here, T = 1/12. So, E= (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000)12−1=17.0%您好,我是想ERA是年化利率,所以按照学习的内容,这么列的公式。是哪里理解的有偏差?
NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV)T1−1 E= . Here, T = 1/12. So, E= (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000)12−1=17.0%一个月到期,不是说明一个月结一次么,一年就得是12次?
NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV)T1−1 E= . Here, T = 1/12. So, E= (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000)12−1=17.0%老师请问一下,为什么这里不是1+12分之r,然后滚一次方来算呢