开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

ccling · 2018年11月27日

问一道题:NO.PZ2017092702000073 [ CFA I ]

问题如下图:

选项:

A.

B.

C.

解释:

老师,算完他的expected sales,然后不是应该算他的covariance吗?为什么这里写的是variance?

1 个答案

菲菲_品职助教 · 2018年11月27日

同学你好,因为这题让我们求的是标准差,所以我们先算出期望,然后根据公式算出方差,再开根号就得到标准差了。这题跟协方差没有什么关系。

  • 1

    回答
  • 0

    关注
  • 464

    浏览
相关问题

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 1

2024-04-07 16:29 1 · 回答

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 请问这道题目可以用金融计算器算吗

2023-10-22 22:47 1 · 回答

NO.PZ2017092702000073问题如下The probability stribution for a company’s sales is:The stanrviation of sales is closest to:A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 1.可不可以再一下为啥求均值就是求期望?2.这里的variance为啥不除以总个数?谢谢

2023-06-18 17:51 1 · 回答

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 答案解析第二步不明白

2023-05-26 00:04 1 · 回答

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 麻烦帮忙一下,谢谢

2022-10-02 19:09 1 · 回答