问题如下图:老师你好,之前有道题我做错了有老师解答说应该是假设值-样本均值,但这题是26%-22%啊,可否帮忙解答下,关于这里计算到底样本均值-假设值还是假设值-样本均值,或者说有什么情况分类?谢谢!
选项:
A.
B.
C.
解释:
菲菲_品职助教 · 2018年11月05日
同学你好,这道题的解析的那个公式是正确的,应该是26%-22%,样本值减去假设值。
不知你是否还能找到之前那道题目,能找到的话我们再来讨论下这个问题。
大蒙 · 2018年11月05日
那道题我找了下,我的问题还在,但是对应的题目已经不是我提问的题目了。我又看了下,是不是正太分布标准化的时候,分子是假设值-均值;而在假设检验这里,分子是均值-假设值?
大蒙 · 2018年11月05日
老师你好,我找到了另外一题,219题,那题用的是假设值-样本值。这是怎么区分的啊?感觉这块好乱
菲菲_品职助教 · 2018年11月05日
这样。我去核实一下。然后给你一个答复哦。
NO.PZ2015120604000145 问题如下 Here is a table scribing sample statistifrom two bon' rate of return whiare both normally stributeover the past cas. If investor is consiring whether the meof bonA is equto 22%,whiof the following conclusion is least appropriate (significant level=1%) ? A.The null hypothesis crejecte B.It is appropriate to use a two-tailet-test. C.The test statistic value is 1.333. A is correct.The null hypothesis: H0: μ=22%.Because the sample size is 25, whiis less th30, so it is appropriate to use the two-tailet-test.t=(X−μ0)sn=(0.26−0.22)0.1525=1.33t=\frac{(X-\mu_0)}{\frs{\sqrt n}}={\textstyle\frac{(0.26-0.22)}{\textstyle\frac{0.15}{\sqrt{25}}}}=1.33t=ns(X−μ0)=250.15(0.26−0.22)=1.33t α= 0.01= ±2.797;Because -2.797 1.333 +2.797, therefore, H0 cannot rejecte 这个是双尾T检验,请问B为什么不对呢?
NO.PZ2015120604000145 问题如下 Here is a table scribing sample statistifrom two bon' rate of return whiare both normally stributeover the past cas. If investor is consiring whether the meof bonA is equto 22%,whiof the following conclusion is least appropriate (significant level=1%) ? A.The null hypothesis crejecte B.It is appropriate to use a two-tailet-test. C.The test statistic value is 1.333. A is correct.The null hypothesis: H0: μ=22%.Because the sample size is 25, whiis less th30, so it is appropriate to use the two-tailet-test.t=(X−μ0)sn=(0.26−0.22)0.1525=1.33t=\frac{(X-\mu_0)}{\frs{\sqrt n}}={\textstyle\frac{(0.26-0.22)}{\textstyle\frac{0.15}{\sqrt{25}}}}=1.33t=ns(X−μ0)=250.15(0.26−0.22)=1.33t α= 0.01= ±2.797;Because -2.797 1.333 +2.797, therefore, H0 cannot rejecte 请问: 考试这题怎么做?significant leval=1%, t检验是n-1. 这个考试中有表可以查吗?
NO.PZ2015120604000145 问题如下 Here is a table scribing sample statistifrom two bon' rate of return whiare both normally stributeover the past cas. If investor is consiring whether the meof bonA is equto 22%,whiof the following conclusion is least appropriate (significant level=1%) ? A.The null hypothesis crejecte B.It is appropriate to use a two-tailet-test. C.The test statistic value is 1.333. A is correct.The null hypothesis: H0: μ=22%.Because the sample size is 25, whiis less th30, so it is appropriate to use the two-tailet-test.t=(X−μ0)sn=(0.26−0.22)0.1525=1.33t=\frac{(X-\mu_0)}{\frs{\sqrt n}}={\textstyle\frac{(0.26-0.22)}{\textstyle\frac{0.15}{\sqrt{25}}}}=1.33t=ns(X−μ0)=250.15(0.26−0.22)=1.33t α= 0.01= ±2.797;Because -2.797 1.333 +2.797, therefore, H0 cannot rejecte 查t表的时候为什么用24呢(25-1))
NO.PZ2015120604000145问题如下Here is a table scribing sample statistifrom two bon' rate of return whiare both normally stributeover the past cas. If investor is consiring whether the meof bonA is equto 22%,whiof the following conclusion is least appropriate (significant level=1%) ?A.The null hypothesis crejecteB.It is appropriate to use a two-tailet-test.C.The test statistic value is 1.333. A is correct.The null hypothesis: H0: μ=22%.Because the sample size is 25, whiis less th30, so it is appropriate to use the two-tailet-test.t=(X−μ0)sn=(0.26−0.22)0.1525=1.33t=\frac{(X-\mu_0)}{\frs{\sqrt n}}={\textstyle\frac{(0.26-0.22)}{\textstyle\frac{0.15}{\sqrt{25}}}}=1.33t=ns(X−μ0)=250.15(0.26−0.22)=1.33t α= 0.01= ±2.797;Because -2.797 1.333 +2.797, therefore, H0 cannot rejecte 总体方差不是15%?
NO.PZ2015120604000145 问题如下 Here is a table scribing sample statistifrom two bon' rate of return whiare both normally stributeover the past cas. If investor is consiring whether the meof bonA is equto 22%,whiof the following conclusion is least appropriate (significant level=1%) ? A.The null hypothesis crejecte B.It is appropriate to use a two-tailet-test. C.The test statistic value is 1.333. A is correct.The null hypothesis: H0: μ=22%.Because the sample size is 25, whiis less th30, so it is appropriate to use the two-tailet-test.t=(X−μ0)sn=(0.26−0.22)0.1525=1.33t=\frac{(X-\mu_0)}{\frs{\sqrt n}}={\textstyle\frac{(0.26-0.22)}{\textstyle\frac{0.15}{\sqrt{25}}}}=1.33t=ns(X−μ0)=250.15(0.26−0.22)=1.33t α= 0.01= ±2.797;Because -2.797 1.333 +2.797, therefore, H0 cannot rejecte 请解答者详细解析下这个题目,如果遇到百分数是不是直接去单位进行计算,这个funb是不是不予理会。我觉得品职出题是很细但也很奇怪。