开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

walkman · 2018年10月23日

问一道题:NO.PZ2017092702000073 [ CFA I ]

问题如下图:

选项:我想问一下有权重的算平均数和方差是不能按计算机的吧

A.

B.

C.

解释:

2 个答案

Cherry9520 · 2019年04月26日

按老师说的 还是算不出答案 有权重的 如何用计算器算标准差?

菲菲_品职助教 · 2019年04月27日

就是按照我下面那个方法就能算出来了啊,你是不是哪里按错啦导致结果不正确~

絮飛W涙 · 2019年08月19日

老师你教的方法为什么我算出来是18.7

夏白雨 · 2019年08月27日

我把6个数值输入后也是18.7,为什么呀?输入了6个数值,然后输入 2ND-8-向下箭头,找到标准差。请问哪里需要改正?

菲菲_品职助教 · 2018年10月23日

同学你好,是可以的哦,就比如这题:

2ND - 7 - X01=70; Y01=5 - X02=40; Y02=70 - X03=25; Y03=25 - 2ND - 8 - 2ND - ENTER(重复按这一步,直到变成1-V模式 - 往下翻 - 找到σx就是题目要我们求得标准差。

 

未命名 · 2018年11月11日

太牛了,这个在2,3级别会学到么,这些模式不太懂

菲菲_品职助教 · 2018年11月12日

其实二级就不太会考你标准差的计算这些基础的东西啦,相反二级涉及的计算一般都还是比较简单的,思考的层面和深度会更深一些。跟一级的侧重点不一样哦。

污叫兽 · 2018年12月18日

偷偷问,这个1-v模式是什么模式的缩写?

菲菲_品职助教 · 2018年12月18日

@污叫兽 1-V是一元统计的意思。

Violetta · 2019年06月10日

助教,为什么在这个模式下的x均值和lin模式下的x均值也会不一样呢

FrankSun · 2019年10月28日

老师,算了几遍了,也2nd+ce清零了,按照您的算法,σx是18.708287啊

毛线 · 2019年11月26日

因为出现了lin是线性的意思 这时候要按set调成1-v 就算出来了

  • 2

    回答
  • 8

    关注
  • 464

    浏览
相关问题

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 1

2024-04-07 16:29 1 · 回答

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 请问这道题目可以用金融计算器算吗

2023-10-22 22:47 1 · 回答

NO.PZ2017092702000073问题如下The probability stribution for a company’s sales is:The stanrviation of sales is closest to:A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 1.可不可以再一下为啥求均值就是求期望?2.这里的variance为啥不除以总个数?谢谢

2023-06-18 17:51 1 · 回答

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 答案解析第二步不明白

2023-05-26 00:04 1 · 回答

NO.PZ2017092702000073 问题如下 The probability stribution for a company’s sales is:The stanrviation of sales is closest to: A.$9.81 million. B.$12.20 million. C.$32.40 million. A is correct. The analyst must first calculate expectesales 0.05 × $70 + 0.70 × $40 + 0.25 × $25 = $3.50 million + $28.00 million + $6.25 million = $37.75 million. After calculating expectesales, we ccalculate the varianof sales: = σ2 (Sales) = P($70)[$70 – E(Sales)]2 + P($40)[$40 – E(Sales)]2 + P($25)[$25 – E(Sales)]2 = 0.05($70 – 37.75)2 + 0.70($40 – 37.75)2 + 0.25($25 – 37.75)2 = $52.00 million + $3.54 million + $40.64 million = $96.18 million. The stanrviation of sales is thus σ = ($96.18)1/2 = $9.81 million. 麻烦帮忙一下,谢谢

2022-10-02 19:09 1 · 回答