开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

syfzln · 2025年02月25日

求解

NO.PZ2020010304000016

问题如下:

Suppose that the annual profit of two firms, one an incumbent (Big Firm, X1) and the other a startup (Small Firm, X2), can be described with the following probability matrix:

What are the conditional expected profit and conditional standard deviation of the profit of Big Firm when Small Firm either has no profit or loses money (X2 0)?

选项:

A.

3.01; 30.52

B.

3.01; 931

C.

1.03; 30.52

D.

1.03; 931.25

解释:

We need to compute the conditional distribution given X2 ≤ 0. The relevant rows of the probability matrix are

The conditional distribution can be constructed by summing across rows and then normalizing to sum to unity. The non-normalized sum and the normalized version are

Finally, the conditional expectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = USD 3.01M.

The conditional expectation squared is E[X1^2|X2 ≤0]=940.31, and so

the conditional variance is V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25

and the conditional standard deviation is USD 30.52M.

为什么这题的条件概率可以直接把符合条件的两个概率相加,然后算出来的权重就可以当成概率求期望?不用拿联合除以边缘再算吗

1 个答案

李坏_品职助教 · 2025年02月25日

嗨,努力学习的PZer你好:


拿联合除以边缘,你可能是想说贝叶斯概率。

P(A|B) = P(AB) / P(B)。


这道题给的数字已经是条件概率了,比如1.97%指的是P(X1=-50 | X2 = -1),3.9%是P(X1=-50 | X2=0)。所以直接加起来就是要求的条件概率。


如果用贝叶斯公式,反而会无法解题。这种概率分布表就是直接给出条件概率的。

----------------------------------------------
加油吧,让我们一起遇见更好的自己!

  • 1

    回答
  • 0

    关注
  • 4

    浏览
相关问题

NO.PZ2020010304000016问题如下Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)?A.3.01; 30.52B.3.01; 931C.1.03; 30.521.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M.算方差时,那个940.31怎么来的,没看懂,x1取多少啊

2025-02-15 16:12 1 · 回答

NO.PZ2020010304000016问题如下Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)?A.3.01; 30.52B.3.01; 931C.1.03; 30.521.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M.The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25。然后有了第一问的期望减去每个数值,然后用到标准化之后的概率,不就可以算出方差了吗

2025-02-15 11:29 2 · 回答

NO.PZ2020010304000016 问题如下 Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)? A.3.01; 30.52 B.3.01; 931 C.1.03; 30.52 1.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. 如题,我这样计算出的答案S30.43

2024-03-11 17:13 1 · 回答

NO.PZ2020010304000016 问题如下 Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)? A.3.01; 30.52 B.3.01; 931 C.1.03; 30.52 1.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. normalize好像讲义里都没提到

2024-03-03 17:25 2 · 回答