NO.PZ2020011303000224
问题如下:
The price of a three-year Treasury bond with a face value of 1 million and a coupon of 4% when the term structure is flat at 5% is 97.245937. The effective duration and convexity of the bond are 2.784703 and 9.35 resectively.
Estimate the effect of all rates increasing by 0.25% using (a) duration and (b) duration plus convexity.
选项:
A.
(a) -0.696%, (b) -0.683%
B.
(a) -0.696%, (b) -0.709%
C.
(a) 0.696%, (b) 0.683%
D.
(a) 0.696%, (b) 0.709%
解释:
The predicted change using duration is
-97.245937×2.784703×0.0025= -0.677003
Using duration plus convexity we get the estimated change as
-97.245937×2.784703× 0.0025+1/2× 97.245937 ×9.349608× 0.00252= - 0.674161
The actual change is −0.674170, very close to this.
题目问:已知3年期的treasurybond,面值=1m,coupon rate=4%,利率=5%,利率的期限结构是flat的。这个债券的价格是97.245937,effective duration和convexity分别是2.784703和9.3。
题目要求估计一下利率上升0.25%对价格的影响,a)只考虑duration,b)考虑duration和convexity。
treasury bond一般每半年付息一次。
考虑duration的价格变化:
ΔP=-V0*Duration*ΔR
=-97.245937×2.784703×0.0025
= -0.677003
考虑duration和convexity的价格变化:
ΔP=-V0*Duration*ΔR+0.5*V0*Convexity*ΔR2
=-97.245937×2.784703× 0.0025+1/2× 97.245937 ×9.35× 0.00252
= - 0.674161
这题好像答案跟选项不符合,理论上利率上升,加了convexity,相比只有duration的话,价格下降应该更少一些吧