开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

mino酱是个小破货 · 2025年01月19日

烦请老师帮忙看下是否可以这么回答,谢谢老师

* 问题详情,请 查看题干

NO.PZ202301280200000803

问题如下:

Calculate the value of the variance swap six months from initiation.

选项:

解释:

Correct Answer:

The value of the variance swap at time t is given by the formula:

VarSwapt = Variance notional × PVt (T) × {t/T × [Realized Vol(0,t)]2 + [(T – t)/T)] × [ImpliedVol(t,T)]2 – Strike2}

Variance notional = Vega notional / (2 × Strike) = $10,000,000/ (2 × 23) = $217,391

Realized volatility = 152 = 225

Implied volatility = 182 = 324

t = 6

T = 12

The present value interest factor after six months (discounting for six months where annual interest rate is 4.08%):

PVt(T) = 1 / [1 + (4.08% × (6/12))] = 0.98

Var Swap = $217,391 × 0.98 × {[(6/12) × 225] + [(6/12) × 324] – 529}

= $217,391 × 0.98 × (– 254.50)

= – $54,219,565.22

Given that Nikolayev is short the variance swap, the mark-to-market value is positive for Nikolayev.

Value of the variance swap = $54,219,565

variance notional=217391

discount ratio=0.98

value of the variance wap=217391 *098 *(529- 274.5)=54219564

the value of the variance swap six months from initiation is 54219564

0 个答案
  • 0

    回答
  • 0

    关注
  • 1

    浏览
相关问题