开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

S🍭🐾 · 2025年01月12日

这题要考虑16天交易日么,还是用根号12

* 问题详情,请 查看题干

NO.PZ202112010200002202

问题如下:

What is the approximate VaR for the bond position at a 99% confidence interval (equal to 2.33 standard deviations) for one month (with 21 trading days) if daily yield volatility is 1.50 bps and returns are normally distributed?

选项:

A.

$1,234,105

B.

$2,468,210

C.

$5,413,133

解释:

A is correct. The expected change in yield based on a 99% confidence interval for the bond and a 0.015% yield volatility over 21 trading days equals 16 bps = (0.015% × 2.33 standard deviations × √21).

We can quantify the bond’s market value change by multiplying the familiar (–ModDur × ∆Yield) expression by bond price to get $1,234,105 = ($75 million × 1.040175 (–9.887 × .0016)).

这题要考虑16天交易日么,还是用根号12计算年度volatility

1 个答案
已采纳答案

发亮_品职助教 · 2025年01月13日

不用年化,要把数据进行月化。


这道题给的数据就是每日的波动率数据:

daily yield volatility is 1.50 bps


这不是年化数据,这是一个每日数据。题目让计算的是月度的VaR,我们应该找到月度的利率波动率数据。

所以要把这个每日的波动率转换成月度波动率。已知一个月21个交易日,则转换为:


月度利率波动率 = 根号21 × 每日利率波动率 = 根号21 × 1.5bps

这道题用以上的波动率算月度VaR即可:


99%的概率下,1个月YTM的最大上升幅度为:2.33 × 根号21 × 1.5bps

这是债券YTM的最大上升幅度,再乘以债券的duration和market value,可以算出债券的价格最大下降金额,为:

-duration × markt value × 2.33 × 根号 21 × 1.5 bps


如果说题目给的是年度的yield volatility,即, annualized daily yield volatility,有annualized出现这是年化后的数据。

题目让算月度VaR,那么需要把年化的波动率转换成月度波动率。1年12个月,则:


年化波动率 = 根号12 × 月度波动率

去年化后为:月度波动率 = 年化波动率 / 根号12


然后用月度波动率算月度VaR即可。为:

99%的概率下,1个月YTM的最大上升幅度为:年化波动率/根号12 × 2.33

再乘以债券的duration和market value,可以算出债券的价格最大下降金额,为:


-duration × market value × 年化波动率/根号12 × 2.33


关于yield volatility数据的出法,就是以上2种。解题就是把题目已知的yield volatility期限,调整到题目待求的VaR的期限

  • 1

    回答
  • 0

    关注
  • 6

    浏览
相关问题

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 如题。类似计算VaR这种连续乘法的计算,我可以直接在计算器一口气直接按完,而不需要分几步,这样就缺失了四舍五入的步骤,导致计算结果和分步四舍五入的正确答案有较大差异。那我应该怎么做呢?正式考试如果遇到主观题,这样算对吗?谢谢!

2025-01-11 18:14 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 我记得学二级的时候我们计算99%的VaR用的是 μ - 2.33 σ, 本题计算中只用了2.33σ 去算,μ默认取0,这是什么原因?另外YTM这里为什么不用在计算中呢?谢谢老师~

2024-07-21 12:32 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 请问本题是做了修正吗?默认0.015% yielvolatility是针对y的,不是lta y/y 吗

2024-07-17 23:50 2 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 老师您好,我按照答案公式计算,得到的结果是$1,235,347。是不是协会把计算公式改了,答案没改?

2024-06-15 10:03 1 · 回答