NO.PZ2021061002000063
问题如下:
A client owns 1,000 common
non-dividend-paying shares of K company, at a spot price of AUD124 per share.
The client enters into a forward commitment to sell all the position in three
months at a price of AUD 128.4.
Which of the following market events is
most likely to result in the greatest loss in the forward contract MTM value
from the client’s perspective?
选项:
A.The rise in the risk-free interest
rate.
A fall in the risk-free interest rate.
An immediate decline in the K stock spot price
following contract inception.
解释:
For a short forward position, the mark-to-market (MTM) value is given by the formula: MTM value = F0(T)/(1+r)^T-t - St
From this formula, we can see that an increase in the risk-free rate will cause the MTM value to decrease, resulting in a loss. Therefore, option A is correct.
On the other hand, a decrease in the stock price, as well as a decrease in the risk-free rate, will cause the MTM value to increase.
中文解析:
根据题干可知,客户想要通过远期合约在3个月后减少持有的股票头寸,因此他应该进入的是short forward头寸。
Short forward头寸下,MTM value = F0(T)/(1+r)^T-t - St
由上式可以看到:无风险利率上涨会使得MTM value下降,也就是会产生loss。因此选A。
而股票价格下跌,以及无风险利率的下跌会使得MTM value增加。
无风险利率的变化对期货价格是有影响的,对现货价格会有影响吗?