开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

梦梦 · 2024年11月11日

为什么普通资产组合和barbell的duration计算方式不一样

NO.PZ2023091701000042

问题如下:

A portfolio manager is analyzing the impact of yield changes on two portfolios: portfolio ASD andportfolio BTE. Portfolio ASD has two zero-coupon bonds and portfolio BTE has only one zero-couponbond. Additional information on the portfolio is provided in the table below:


To assess the potential effect of a parallel shift in the yield curve on portfolio values, the manager runs a scenario in which yields increase by 200 bps across all points of the yield curve. In addition, the manager estimates a convexity of 34.51 for portfolio ASD and 36.00 for portfolio BTE. Assuming continuous compounding, which of the following are the best estimates to the decrease in the values of the two portfolios due to the effects of duration and convexity?

选项:

PortfolioASD丨 PortfolioBTE

A.USD 102,000丨USD 65,000

B.USD 110,000丨USD 70,000

C.USD 118,000丨USD 74,000

D.USD 127,000丨USD 79,000

解释:

Step 1 - Calculate the values of the two portfolios before increases in yield:

Portfolio ASD

PA = Value before yield increase: 1,000,000*exp(-0.1*3)+1,000,000*exp(-0.1*9)

= USD 740,818.22 + USD 406,569.66 = USD 1,147,387.88

Portfolio BTE

PB = Value before yield increase: 1,000,000*exp(-0.08*6) = 618,783.39

Step 2 - Calculate the duration of the two portfolios before increases in yield:

Portfolio ASD

DA = weighted-average durations of the two zero-coupon bonds

= DA*WA + DB*WB = 3*(740,818.22/1,147,387.88) + 9*(406,569.66) = 5.13

Portfolio BTE

DB = duration of portfolio BTE = 6.00 (same as maturity, zero-coupon bond).

Step 3 – Note the convexities given for the two portfolios (no need to calculate):

CA = 34.51; CB = 36.00

Step 4 - Estimate the changes in portfolio values due to the yield change (Δy) and the effects of duration and convexity:Change in bond value = DP = -P*D*Δy + ½*P*C*(Δy)2

Thus,

Portfolio ASD

ΔPA = -PA*DA*Δy + ½*PA*CA*(Δy)2

= -1,147,387.88*5.13*0.02 + 0.5*1,147,387.88*34.51*(0.02)2

= -117,722.00 + 7,919.27 = USD -109,802.73

Portfolio BTE

ΔPB = -PB*DB*Δy + ½*PB*CB*(Δy)2

= -618,783.39*6.00*0.02 + 0.5*618,783.39*36*0.0004

= -74,254.00 + 4,455.24 = USD -69,798.76

A is incorrect. The change in value for both portfolios are wrongly computed as the parameter 0.5 is left out in the convexity formula.

C is incorrect. The changes in value for both portfolios do not consider the effect of convexity.

D is incorrect. Changes in value for both portfolios are wrongly computed by inserting a negative sign (rather than a positive) in the convexity part of the formula.

为啥计算这个的资产组合的duration就要用到每支债券的value

计算barbell的长短期债券组合的duration就不用value,直接用duration乘权重?

2 个答案

pzqa27 · 2024年11月14日

嗨,从没放弃的小努力你好:


如果可以的话,请给我说下题号。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

梦梦 · 2024年11月14日

找不到了,目前遇到的两道关于barbell和bullet的duration计算都是没有计算价值比例,直接组合;遇到的两道普通债券组合的duration都是要duration乘以价值比例。

pzqa27 · 2024年11月12日

嗨,从没放弃的小努力你好:


ASD是一个债券组合,它又不是0息债券,BTE的duration 并不涉及计算,它只是用了0息债券的duration近似到期时间这条性质而已。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

梦梦 · 2024年11月13日

啥意思?我是在问这题和之前有一道求barbell的duration(没有用value权重乘以D)为啥解法不一样?

  • 2

    回答
  • 0

    关注
  • 23

    浏览
相关问题