开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

华赞 · 2024年11月11日

这道题公式

NO.PZ2023091601000073

问题如下:

Suppose that the current daily volatilities of asset X and asset Y are 1.0% and 1.2%, respectively. The prices of the assets at close of trading yesterday were $30 and $50 and the estimate of the coefficient of correlation between the returns on the two assets made at this time was 0.50. Correlations and volatilities are updated using a GARCH (1, 1) model. The estimates of the model's parameters are α = 0.04 and β = 0.94. For the correlation ω = 0.000001, and for the volatilities ω = 0.000003. If the prices of the two assets at close of trading today are $31 and $51, how is the correlation estimate updated?

选项:

A.

0.539

B.

0.549

C.

0.559

D.

0.569

解释:


The estimated covariance of n-1 is:




The covariance of n i:


The asset X’s variance of n is:


因此,

The asset Y’s variance of n is:


So,

The correlation is: 0.0000841 / (0.01189 × 0.01242) = 0.569

老师你好,还是不明白,可以再解释吗

1 个答案

李坏_品职助教 · 2024年11月11日

嗨,从没放弃的小努力你好:


题目让你用GARCH(1,1)去推算资产X的return(X的return是u)和资产Y的return(Y的return是v)的相关系数。就是求u和v的在t时刻的相关系数。

思路是:用t-1时刻的协方差cov t-1,代入GARCH模型求出t时刻的cov,然后用t时刻的cov除以t时刻u和v的标准差,得出t时刻的相关系数。


  1. 根据条件,ut-1 = (31-30)/30 = 1/30 = 0.03333, vt-1 = (51-50)/50 = 1/50= 0.02.
  2. 而t-1时刻的u和v的协方差是cov t-1, cov t-1 = t-1时刻的相关系数0.5 * t-1时刻u的标准差1% * t-1时刻v的标准差1.2% = 0.00006.
  3. 为了求出相关系数,还要求出t时刻的u和v的协方差也就是cov t。按照GARCH(1,1)模型,cov t = w for correlation + α* ut-1 * vt-1 + β * cov t-1 = 0.000001 + 0.04 * 0.03333 * 0.02 + 0.94 * 0.00006 = 0.0000841.
  4. 由于根据GARCH(1,1)模型,t时刻的u的方差 = w for volatilities + α * u^2 t-1 + β * t-1时刻u的方差 = 0.000003+0.04*0.03333^2 + 0.94*0.01^2 = 0.0001414, 所以t时刻u的标准差 = 根号0.0001414 = 0.01189. 同理可以求出t时刻v的标准差是0.01242.
  5. 所以t时刻u和v的相关系数 = t时刻的协方差 0.0000841 / (0.01189 × 0.01242) = 0.569

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!