开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

oceanliuyang1988 · 2018年10月09日

问一道题:NO.PZ2016082406000004 [ FRM II ]

问题如下图:

选项:

A.

B.

C.

D.

解释:

您好请教:请问,在题目未给出pd的标准差时,通常可以使用二项分布标准差计算公式进行求解么?

1 个答案
已采纳答案

orange品职答疑助手 · 2018年10月09日

因为一个贷款只有违约或者不违约的情况,所以它是服从0-1分布(伯努利分布)的,所以它的方差就是pd*(1-pd),(不是标准差)

  • 1

    回答
  • 0

    关注
  • 414

    浏览
相关问题

NO.PZ2016082406000004 A bank hbookea lowith totcommitment of $50,000 of whi80% is currently outstanng. The fault probability of the lois assumeto 2% for the next yeanloss given fault (LG is estimate50%. The stanrviation of LGis 40%. awwn on fault (i.e., the fraction of the unawn loan) is assumeto 60%. The expecteanunexpectelosses (stanrviation) for the bank are Expecteloss = $500, unexpecteloss = $4,140 Expecteloss = $500, unexpecteloss = $3,220 Expecteloss = $460, unexpecteloss = $3,220 Expecteloss = $460, unexpecteloss = $4,140 ANSWER: First, we compute the exposure fault. This is the awn amount, or 80%x$50,000=$40,000 plus the awwn on fault, whiis 60%x$10,000=$6,000, for a totof CE= $46,000. The expecteloss is this amount times   p×E(LG=0.02×50%=1%\;p\times E{(LG}=0.02\times50\%=1\%p×E(LG=0.02×50%=1% ₤or EL = $460. Next, we compute the stanrviation of losses using Equation: σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2\sigma{(CL)}=\sqrt{p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2}σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2 ​. The varianis p×σ2(LG+p×(1−p)×[E(LG]2=0.02(0.4)2+0.02(1−0.02)(0.50)2=0.00810p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2=0.02{(0.4)}^2+0.02{(1-0.02)}{(0.50)}^2=0.00810p×σ2(LG+p×(1−p)×[E(LG]2=0.02(0.4)2+0.02(1−0.02)(0.50)2=0.00810. Taking the square root gives 0.090. Multiplying $46,000 gives $4,140. Ignoring σ2(LG\sigma^2{(LG}σ2(LG gives the incorreanswer of $3,220. Note ththe unexpecteloss is mugreater ththe expecteloss. 为什么公式里是stanrviation of P没有^2?

2021-05-04 16:50 1 · 回答

NO.PZ2016082406000004 A bank hbookea lowith totcommitment of $50,000 of whi80% is currently outstanng. The fault probability of the lois assumeto 2% for the next yeanloss given fault (LG is estimate50%. The stanrviation of LGis 40%. awwn on fault (i.e., the fraction of the unawn loan) is assumeto 60%. The expecteanunexpectelosses (stanrviation) for the bank are Expecteloss = $500, unexpecteloss = $4,140 Expecteloss = $500, unexpecteloss = $3,220 Expecteloss = $460, unexpecteloss = $3,220 Expecteloss = $460, unexpecteloss = $4,140 ANSWER: First, we compute the exposure fault. This is the awn amount, or 80%x$50,000=$40,000 plus the awwn on fault, whiis 60%x$10,000=$6,000, for a totof CE= $46,000. The expecteloss is this amount times   p×E(LG=0.02×50%=1%\;p\times E{(LG}=0.02\times50\%=1\%p×E(LG=0.02×50%=1% ₤or EL = $460. Next, we compute the stanrviation of losses using Equation: σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2\sigma{(CL)}=\sqrt{p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2}σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2 ​. The varianis p×σ2(LG+p×(1−p)×[E(LG]2=0.02(0.4)2+0.02(1−0.02)(0.50)2=0.00810p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2=0.02{(0.4)}^2+0.02{(1-0.02)}{(0.50)}^2=0.00810p×σ2(LG+p×(1−p)×[E(LG]2=0.02(0.4)2+0.02(1−0.02)(0.50)2=0.00810. Taking the square root gives 0.090. Multiplying $46,000 gives $4,140. Ignoring σ2(LG\sigma^2{(LG}σ2(LG gives the incorreanswer of $3,220. Note ththe unexpecteloss is mugreater ththe expecteloss. 这个题目能不能直接用把全损当做wcl,然后ul=4600-460=4140这么做?

2021-04-30 17:00 2 · 回答

NO.PZ2016082406000004 Expecteloss = $500, unexpecteloss = $3,220 Expecteloss = $460, unexpecteloss = $3,220 Expecteloss = $460, unexpecteloss = $4,140 ANSWER: First, we compute the exposure fault. This is the awn amount, or 80%x$50,000=$40,000 plus the awwn on fault, whiis 60%x$10,000=$6,000, for a totof CE= $46,000. The expecteloss is this amount times   p×E(LG=0.02×50%=1%\;p\times E{(LG}=0.02\times50\%=1\%p×E(LG=0.02×50%=1% ₤or EL = $460. Next, we compute the stanrviation of losses using Equation: σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2\sigma{(CL)}=\sqrt{p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2}σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2 ​. The varianis p×σ2(LG+p×(1−p)×[E(LG]2=0.02(0.4)2+0.02(1−0.02)(0.50)2=0.00810p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2=0.02{(0.4)}^2+0.02{(1-0.02)}{(0.50)}^2=0.00810p×σ2(LG+p×(1−p)×[E(LG]2=0.02(0.4)2+0.02(1−0.02)(0.50)2=0.00810. Taking the square root gives 0.090. Multiplying $46,000 gives $4,140. Ignoring σ2(LG\sigma^2{(LG}σ2(LG gives the incorreanswer of $3,220. Note ththe unexpecteloss is mugreater ththe expecteloss.1、请问这里的UL和sigma是用什么地方的公式计算的呢?2、为什么最后用sigma乘以EA?这是算的UL吗

2021-03-26 10:30 1 · 回答

NO.PZ2016082406000004 A bank hbookea lowith totcommitment of $50,000 of whi80% is currently outstanng. The fault probability of the lois assumeto 2% for the next yeanloss given fault (LG is estimate50%. The stanrviation of LGis 40%. awwn on fault (i.e., the fraction of the unawn loan) is assumeto 60%. The expecteanunexpectelosses (stanrviation) for the bank are Expecteloss = $500, unexpecteloss = $4,140 Expecteloss = $500, unexpecteloss = $3,220 Expecteloss = $460, unexpecteloss = $3,220 Expecteloss = $460, unexpecteloss = $4,140 ANSWER: First, we compute the exposure fault. This is the awn amount, or 80%x$50,000=$40,000 plus the awwn on fault, whiis 60%x$10,000=$6,000, for a totof CE= $46,000. The expecteloss is this amount times   p×E(LG=0.02×50%=1%\;p\times E{(LG}=0.02\times50\%=1\%p×E(LG=0.02×50%=1% ₤or EL = $460. Next, we compute the stanrviation of losses using Equation: σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2\sigma{(CL)}=\sqrt{p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2}σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2 ​. The varianis p×σ2(LG+p×(1−p)×[E(LG]2=0.02(0.4)2+0.02(1−0.02)(0.50)2=0.00810p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2=0.02{(0.4)}^2+0.02{(1-0.02)}{(0.50)}^2=0.00810p×σ2(LG+p×(1−p)×[E(LG]2=0.02(0.4)2+0.02(1−0.02)(0.50)2=0.00810. Taking the square root gives 0.090. Multiplying $46,000 gives $4,140. Ignoring σ2(LG\sigma^2{(LG}σ2(LG gives the incorreanswer of $3,220. Note ththe unexpecteloss is mugreater ththe expecteloss. 为什么求UL的时候要用46000作为AE而不是50000

2021-03-16 11:23 1 · 回答

A bank hbookea lowith totcommitment of $50,000 of whi80% is currently outstanng. The fault probability of the lois assumeto 2% for the next yeanloss given fault (LG is estimate50%. The stanrviation of LGis 40%. awwn on fault (i.e., the fraction of the unawn loan) is assumeto 60%. The expecteanunexpectelosses (stanrviation) for the bank are Expecteloss = $500, unexpecteloss = $4,140 Expecteloss = $500, unexpecteloss = $3,220 Expecteloss = $460, unexpecteloss = $3,220 Expecteloss = $460, unexpecteloss = $4,140 ANSWER: First, we compute the exposure fault. This is the awn amount, or 80%x$50,000=$40,000 plus the awwn on fault, whiis 60%x$10,000=$6,000, for a totof CE= $46,000. The expecteloss is this amount times   p×E(LG=0.02×50%=1%\;p\times E{(LG}=0.02\times50\%=1\%p×E(LG=0.02×50%=1% ₤or EL = $460. Next, we compute the stanrviation of losses using Equation: σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2\sigma{(CL)}=\sqrt{p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2}σ(CL)=p×σ2(LG+p×(1−p)×[E(LG]2 ​. The varianis p×σ2(LG+p×(1−p)×[E(LG]2=0.02(0.4)2+0.02(1−0.02)(0.50)2=0.00810p\times\sigma^2{(LG}+p\times{(1-p)}\times{\lbraE{(LG}\rbrack}^2=0.02{(0.4)}^2+0.02{(1-0.02)}{(0.50)}^2=0.00810p×σ2(LG+p×(1−p)×[E(LG]2=0.02(0.4)2+0.02(1−0.02)(0.50)2=0.00810. Taking the square root gives 0.090. Multiplying $46,000 gives $4,140. Ignoring σ2(LG\sigma^2{(LG}σ2(LG gives the incorreanswer of $3,220. Note ththe unexpecteloss is mugreater ththe expecteloss. 我有点混淆Cret-Var和Unexpecteloss的概念了。他们都是损失偏离预期损失的部分,请问unexpecteloss是所有偏离expecteloss的平均数而Cvar只是再某个分位点上的数吗?

2020-10-23 12:44 1 · 回答