pzqa39 · 2024年11月04日
嗨,爱思考的PZer你好:
选项没有错误,解题步骤:
先根据波动率求u和d: u=38*e^15%=44.15 d=38*e^(-15%)=32.71.
求向上的概率Pup= [e^(0.02)-e^(-15%)]/ [e^15%-e^(-15%)]=52.97% 那么Pdown=47.03%。
然后求uu=u*e^15%=51.29 (判断此时put不行权)对应概率是Pup*Pup
ud=u*e^(-15%)=38 (判断此时put行权)对应概率是2*Pup*Pdown =49.82%
dd=d*e^(-15%)=28.15 (判断此时put行权)对应概率是Pdown*Pdown= 22.12%
行权价40可以算出ud和dd时期权的价值分别为:2 和11.85。
那么ud和dd价值加和的期望=2*49.82% +11.85*22.12%= 3.6177。
折现两年3.6177*e^(-2%*2)=3.4758约等于3.48
----------------------------------------------就算太阳没有迎着我们而来,我们正在朝着它而去,加油!
NO.PZ2023091802000131问题如下 analyst is pricing a 2-yeEuropeput option on anon-vinpaying stousing a binomitree with two time steps of one yeareach. The stopriis currently US38, anthe strike priof the put isUS40. Whis the value of the put closest to, assuming ththe annualrisk-free rate will remain constant 2% over the next two years antheannustovolatility is 15% A.US3.04B.US3.48C.US3.62US3.81 这里的 0,2,11.9 分别怎么算出来的,还有 P0=3.48 怎么得来的,这个解答过程和上面一个回答的过程不太一样啊
NO.PZ2023091802000131 问题如下 analyst is pricing a 2-yeEuropeput option on anon-vinpaying stousing a binomitree with two time steps of one yeareach. The stopriis currently US38, anthe strike priof the put isUS40. Whis the value of the put closest to, assuming ththe annualrisk-free rate will remain constant 2% over the next two years antheannustovolatility is 15% A.US3.04 B.US3.48 C.US3.62 US3.81 求此题的计算过程