开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Flying马 · 2024年10月03日

请问老师

NO.PZ2015120604000064

问题如下:

According to the above table, what is the correlation of X and Y, given the joint probability table above?

选项:

A.

-0.98.

B.

0.16.

C.

0.98.

解释:

A is correct

Corr(X,Y)=Cov(X,Y)σxσyCorr(X,Y)=\frac { Cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } } ,

Cov(X,Y)=-4.8, standard deviations of X and Y are 1.90 and 2.58, as calculated before,

thus correlation of X and Y is -0.98

这道题不难理解 但是感觉写了半张纸 费了很多分钟。请问有没有简便方法 或者这种计算量是真题会有的吗。

1 个答案

品职助教_七七 · 2024年10月04日

嗨,爱思考的PZer你好:


这道题没有简便方法,也是常见考法。但可能不考三行三列,只考两行两列,计算量就会小一些。


考试中出现大计算量的题目也不用在意,因为题目的总体时间都经过设计,这就说明一定还会配上几道可以秒出答案的题目。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 1

    回答
  • 0

    关注
  • 88

    浏览
相关问题

NO.PZ2015120604000064 问题如下 Accorng to the above table, whis the correlation of X anY, given the joint probability table above? A.-0.98. B.0.16. C.0.98. A is correctCorr(X,Y)=Cov(X,Y)σxσyCorr(X,Y)=\fr{ Cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } } Corr(X,Y)=σx​σy​Cov(X,Y)​,Cov(X,Y)=-4.8, stanrviations of X anY are 1.90 an2.58, calculatebefore,thus correlation of X anY is -0.98 如题,看了之前的解析,还是不知道X和Y 的标准差怎么求出来的,能不能仔细讲解一下

2024-07-09 12:54 1 · 回答

NO.PZ2015120604000064 问题如下 Accorng to the above table, whis the correlation of X anY, given the joint probability table above? A.-0.98. B.0.16. C.0.98. A is correctCorr(X,Y)=Cov(X,Y)σxσyCorr(X,Y)=\fr{ Cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } } Corr(X,Y)=σx​σy​Cov(X,Y)​,Cov(X,Y)=-4.8, stanrviations of X anY are 1.90 an2.58, calculatebefore,thus correlation of X anY is -0.98 因为要求correlation,所以要分别求出公式里面的covariance和stanrviation分别求E(x)和E(y),得出1和1.6求方差variance,然后开根号得出标准差stanrviation,-- 1.8974和2.5768求covariance: - 4.8把第二点的标准差和第三点的协方差带入correlation的公式求出结果

2024-04-01 14:52 3 · 回答

NO.PZ2015120604000064 问题如下 Accorng to the above table, whis the correlation of X anY, given the joint probability table above? A.-0.98. B.0.16. C.0.98. A is correctCorr(X,Y)=Cov(X,Y)σxσyCorr(X,Y)=\fr{ Cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } } Corr(X,Y)=σx​σy​Cov(X,Y)​,Cov(X,Y)=-4.8, stanrviations of X anY are 1.90 an2.58, calculatebefore,thus correlation of X anY is -0.98 可以告诉一下公式吗

2024-02-25 01:17 3 · 回答

NO.PZ2015120604000064问题如下Accorng to the above table, whis the correlation of X anY, given the joint probability table above?A.-0.98.B.0.16.C.0.98.A is correctCorr(X,Y)=Cov(X,Y)σxσyCorr(X,Y)=\fr{ Cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } } Corr(X,Y)=σx​σy​Cov(X,Y)​,Cov(X,Y)=-4.8, stanrviations of X anY are 1.90 an2.58, calculatebefore,thus correlation of X anY is -0.98为什么计算出VarX 和VarY后,最后一步代入公式 不用开根号?

2024-02-19 23:28 1 · 回答