开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

梦梦 · 2024年09月04日

option与var结合的题目几点疑问

NO.PZ2023091701000092

问题如下:

An at-the-money European call option on the DJ EURO STOXX 50 index with a strike of 2200 and maturing in 1 year is trading at EUR 350, where contract value is determined by EUR 10 per index point. The risk-free rate is 3% per year, and the daily volatility of the index is 2.05%. If we assume that the expected return on the DJ EURO STOXX 50 is 0%, the 99% 1-day VaR of a short position on a single call option calculated using the delta-normal approach is closest to:

选项:

A.EUR 8

B.EUR 53

C.EUR 84

D.EUR 525

解释:

Since the option is at-the-money, the delta is close to 0.5. Therefore a 1 point change in the index would translate to approximately 0.5 × EUR 10 = EUR 5 change in the call value. Therefore, the percent delta, also known as the local delta, defined as %D = (5/350) / (1/2200) = 31.4.

So the 99% VaR of the call option = %D × VaR(99% of index) = %D × call price × alpha (99%) × 1-day volatility = 31.4 × EUR 350 × 2.33 × 2.05% = EUR 525. The term alpha (99%) denotes the 99th percentile of a standard normal distribution, which equals 2.33.

There is a second way to compute the VaR. If we just use a conversion factor of EUR 10 on the index, then we can use the standard delta, instead of the percent delta:

VaR(99% of Call) = D × index price × conversion × alpha (99%) × 1-day volatility = 0.5 × 2200 × 10 × 2.33 × 2.05% = EUR 525, with some slight difference in rounding.

Both methods yield the same result.

老师,1、现在是at the money ,也就是option long的一方以执行价格买股票是赚钱的对吧?

2、这里的option价格指的是option合约的价格还是option value?

3、如果是option value,指的是min还是max?不管哪个,为什么是执行价格?

4、题目只要没说明都默认欧式期权?


梦梦 · 2024年09月04日

不好意思老师,我又仔细看了遍题,您忽略我刚才的问题,看这个问题就好,1、就是option 标的资产股票的价值为什么是执行价格?执行价格不是一开始定好的吗?如果是at the money,股票价格应该大于执行价格吧?2、而且合约的价格是10元每点,合约价和执行价是一个意思?花350元买了期权合约,这350元不是合约价吗?

3 个答案
已采纳答案

pzqa39 · 2024年09月09日

嗨,努力学习的PZer你好:


嗯是的,我理解错了,我以为同学问的是at the money这个条件有没有用。。。

----------------------------------------------
努力的时光都是限量版,加油!

梦梦 · 2024年09月09日

哦哦,好的👌

pzqa39 · 2024年09月08日

嗨,从没放弃的小努力你好:


有用的,我们之前知道2200是执行价格,但是在at the money的情况下,标的资产的价格也是2200,变相告诉我们St了

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

梦梦 · 2024年09月08日

这道题short 或long都是一样的吧因为是at the money

pzqa39 · 2024年09月05日

嗨,从没放弃的小努力你好:


这道题350是option的价格,2200是期权的执行价格,当AT THE MONEY的时候,期权的执行价格X和股票的价格S是相等的。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

梦梦 · 2024年09月08日

嗯嗯,想起来了,at the money是X=St,这道题问的是short position of call option,这个条件没有用?

  • 3

    回答
  • 0

    关注
  • 109

    浏览
相关问题

NO.PZ2023091701000092问题如下 at-the-money Europecall option on the EUROSTOXX 50 inx with a strike of 2200 anmaturing in 1 yeis trang EUR350, where contravalue is termineEUR 10 per inx point. Therisk-free rate is 3% per year, anthe ily volatility of the inx is 2.05%.If we assume ththe expectereturn on the EURO STOXX 50 is 0%, the 99%1-y Vof a short position on a single call option calculateusing thelta-normapproais closest to: A.EUR 8B.EUR 53C.EUR 84EUR 525 Sinthe option isat-the-money, the lta is close to 0.5. Therefore a 1 point change in theinx woultranslate to approximately 0.5 × EUR 10 = EUR 5 change in the callvalue. Therefore, the percent ltalso known the locltfineas%= (5/350) / (1/2200) = 31.4. So the 99% Vof thecall option = %× VaR(99% of inx) = %× call pri× alpha (99%) × 1-yvolatility = 31.4 × EUR 350 × 2.33 × 2.05% = EUR 525. The term alpha (99%)notes the 99th percentile of a stanrnormstribution, whiequals2.33. There is a seconwayto compute the VaR. If we just use a conversion factor of EUR 10 on the inx,then we cuse the stanrltinsteof the percent ltVaR(99% of Call) = inx pri× conversion × alpha (99%) × 1-y volatility = 0.5 × 2200 × 10 ×2.33 × 2.05% = EUR 525, with some slight fferenin rounng. Both metho yielhe same result. with a strike of 2200,这里是点,不是金额对吧?contravalue is 10/inx,合约价值是一点10元,合约价值是什么意思?和学期权时的payoff=max(0,S-X)是一个意思吗?我看执行价格直接用2200乘以10了,是啥原理呢

2024-11-11 20:03 2 · 回答

NO.PZ2023091701000092 问题如下 at-the-money Europecall option on the EUROSTOXX 50 inx with a strike of 2200 anmaturing in 1 yeis trang EUR350, where contravalue is termineEUR 10 per inx point. Therisk-free rate is 3% per year, anthe ily volatility of the inx is 2.05%.If we assume ththe expectereturn on the EURO STOXX 50 is 0%, the 99%1-y Vof a short position on a single call option calculateusing thelta-normapproais closest to: A.EUR 8 B.EUR 53 C.EUR 84 EUR 525 Sinthe option isat-the-money, the lta is close to 0.5. Therefore a 1 point change in theinx woultranslate to approximately 0.5 × EUR 10 = EUR 5 change in the callvalue. Therefore, the percent ltalso known the locltfineas%= (5/350) / (1/2200) = 31.4. So the 99% Vof thecall option = %× VaR(99% of inx) = %× call pri× alpha (99%) × 1-yvolatility = 31.4 × EUR 350 × 2.33 × 2.05% = EUR 525. The term alpha (99%)notes the 99th percentile of a stanrnormstribution, whiequals2.33. There is a seconwayto compute the VaR. If we just use a conversion factor of EUR 10 on the inx,then we cuse the stanrltinsteof the percent ltVaR(99% of Call) = inx pri× conversion × alpha (99%) × 1-y volatility = 0.5 × 2200 × 10 ×2.33 × 2.05% = EUR 525, with some slight fferenin rounng. Both metho yielhe same result. 这道题我尝试用BSM mol来解可以吗=[ln (so/x)+ (u+v^/2)T/(vT^0.5) 因为题目说是 the money so=x然后说expectereturn = 0, 所以u = 0V 和T 都给了 我就算出来 =0.01025所以N() = 0.50399 = ltaVoption = |*Vinx

2024-10-27 05:42 1 · 回答