开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

JaniceKo · 2024年06月10日

计算DBD与题目答案不相同

NO.PZ2016031001000069

问题如下:

Bond G, described in the exhibit below, is sold for settlement on 16 June 2014.

Annual Coupon 5%

Coupon Payment Frequency Semiannual

Interest Payment Dates 10 April and 10 October

Maturity Date 10 October 2016

Day Count Convention 30/360

Annual Yield-to-Maturity 4%

The full price that Bond G will settle at on 16 June 2014 is closest to:

选项:

A.

102.36.

B.

103.10.

C.

103.65.

解释:

B is correct.

The bond’s full price is 103.10. The price is determined in the following manner:As of the beginning of the coupon period on 10 April 2014, there are 2.5 years (5semiannual periods) to maturity. These five semiannual periods occur on 10 October2014, 10 April 2015, 10 October 2015, 10 April 2016 and 10 October 2016.

PV=PMT(1+r)1+PMT(1+r)2+PMT(1+r)3+PMT(1+r)4+PMT+FV(1+r)5PV=\frac{PMT}{{(1+r)}^1}+\frac{PMT}{{(1+r)}^2}+\frac{PMT}{{(1+r)}^3}+\frac{PMT}{{(1+r)}^4}+\frac{PMT+FV}{{(1+r)}^5}

PV=2.5(1+0.02)1+2.5(1+0.02)2+2.5(1+0.02)3+2.5(1+0.02)4+2.5+100(1+0.02)5PV=\frac{2.5}{{(1+0.02)}^1}+\frac{2.5}{{(1+0.02)}^2}+\frac{2.5}{{(1+0.02)}^3}+\frac{2.5}{{(1+0.02)}^4}+\frac{2.5\text{+}100}{{(1+0.02)}^5}

PV = 2.45 + 2.40 + 2.36 + 2.31 + 92.84 = 102.36

The accrued interest period is identified as 66/180. The number of days between10April2014 and 16 June 2014 is 66 days based on the 30/360 day count convention. (This is 20days remaining in April + 30 days in May + 16 days in June = 66 days total). The number of days between coupon periods is assumed to be 180 days using the 30/360 day convention.

PVFull=PV×(1 +r)66/180PV^{Full}=PV\times{(1\text{ }+r)}^{66/180}

PVFull= 102.36×(1.02)66/180= 103.10PV^{Full}=\text{ }102.36\times{(1.02)}^{66/180}=\text{ }103.10

考点:flat price & full price

解析:首先,我们将未来五笔现金流折现到2014.4.10,得到现值之和为102.36。N=5,PMT=2.5,I/Y=2,FV=100,求得PV=102.36

然后再将这个数值复利到2014.6.16,得到full price为103.10,故选项B正确。

我们之所以没有直接将未来五笔现金流折到2014.6.16,是因为五笔现金流的时间间隔不同,后面四笔现金流时间间隔是半年,而从6.16到10.10之间并不是半年。因此现金流就不是一个年金的形式,我们就没有办法用计算器直接求PV了。

老师您好, 我用计算机计算了几次, DT1=4.1014 DT2=6.1614 DBD= 67 , 但是答案是66 .虽然计算出来的结果差异不大但是到底为何答案会是66 呢?

3 个答案
已采纳答案

吴昊_品职助教 · 2024年06月11日

嗨,努力学习的PZer你好:


Day Count Convention 30/360,现在题干的假设是一年360天,一个月30天。你用DBD计算的是基于actual/actual的方式,所以两者之间会有误差。

4.10到6.10号,一共两个月60天,再加上6.11到6.16,六天,加总一共是66天。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

JaniceKo · 2024年06月15日

那么是否用计算器计出結果要減1?

SEVEN澤🐻 · 2024年07月07日

老师好,请问按180天算是因为是semi-annual吗?

吴昊_品职助教 · 2024年06月15日

嗨,爱思考的PZer你好:


不谢。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

吴昊_品职助教 · 2024年06月15日

嗨,从没放弃的小努力你好:


不是所有actual/actual和30/360计算出来的结果都是差1的,比如日子涉及到7月和8月,实际两个月份连着都是31天,但30/360的计算模式下,连着两个月都是30天。

所以如果是30/360,直接按我说的方式计算即可,不要按计算器。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

JaniceKo · 2024年06月15日

好的,谢谢

  • 3

    回答
  • 0

    关注
  • 161

    浏览
相关问题

NO.PZ2016031001000069 问题如下 BonG, scribein the exhibit below, is solfor settlement on 16 June 2014.AnnuCoupon 5%Coupon Payment Frequen SemiannualInterest Payment tes 10 April an10 OctoberMaturity te 10 October 2016y Count Convention 30/360AnnuYielto-Maturity 4%The full prithBonG will settle on 16 June 2014 is closest to: A.102.36. B.103.10. C.103.65. B is correct.The bons full priis 103.10. The priis terminein the following manner:of the beginning of the coupon perioon 10 April 2014, there are 2.5 years (5semiannuperio) to maturity. These five semiannuperio occur on 10 October2014, 10 April 2015, 10 October 2015, 10 April 2016 an10 October 2016. PV=PMT(1+r)1+PMT(1+r)2+PMT(1+r)3+PMT(1+r)4+PMT+FV(1+r)5PV=\frac{PMT}{{(1+r)}^1}+\frac{PMT}{{(1+r)}^2}+\frac{PMT}{{(1+r)}^3}+\frac{PMT}{{(1+r)}^4}+\frac{PMT+FV}{{(1+r)}^5}PV=(1+r)1PMT​+(1+r)2PMT​+(1+r)3PMT​+(1+r)4PMT​+(1+r)5PMT+FV​PV=2.5(1+0.02)1+2.5(1+0.02)2+2.5(1+0.02)3+2.5(1+0.02)4+2.5+100(1+0.02)5PV=\frac{2.5}{{(1+0.02)}^1}+\frac{2.5}{{(1+0.02)}^2}+\frac{2.5}{{(1+0.02)}^3}+\frac{2.5}{{(1+0.02)}^4}+\frac{2.5\text{+}100}{{(1+0.02)}^5}PV=(1+0.02)12.5​+(1+0.02)22.5​+(1+0.02)32.5​+(1+0.02)42.5​+(1+0.02)52.5+100​PV = 2.45 + 2.40 + 2.36 + 2.31 + 92.84 = 102.36The accrueinterest periois intifie66/180. The number of ys between10April2014 an16 June 2014 is 66 ys baseon the 30/360 y count convention. (This is 20ys remaining in April + 30 ys in M+ 16 ys in June = 66 ys total). The number of ys between coupon perio is assumeto 180 ys using the 30/360 y convention.PVFull=PV×(1 +r)66/180PV^{Full}=PV\times{(1\text{ }+r)}^{66/180}PVFull=PV×(1 +r)66/180PVFull= 102.36×(1.02)66/180= 103.10PV^{Full}=\text{ }102.36\times{(1.02)}^{66/180}=\text{ }103.10PVFull= 102.36×(1.02)66/180= 103.10考点flpri full price解析首先,我们将未来五笔现金流折现到2014.4.10,得到现值之和为102.36。N=5,PMT=2.5,I/Y=2,FV=100,求得PV=102.36然后再将这个数值复利到2014.6.16,得到full price为103.10,故B正确。我们之所以没有直接将未来五笔现金流折到2014.6.16,是因为五笔现金流的时间间隔不同,后面四笔现金流时间间隔是半年,而从6.16到10.10之间并不是半年。因此现金流就不是一个年金的形式,我们就没有办法用计算器直接求PV了。 为什么要用半年期的利率来把4月10号的PV折算到6月16号。也就是, 为什么是用半年期对应的(1+2%)^(66/180), 而不是用annual的数据, (1+4%)^(66/360)

2024-09-28 19:47 1 · 回答

NO.PZ2016031001000069 问题如下 BonG, scribein the exhibit below, is solfor settlement on 16 June 2014.AnnuCoupon 5%Coupon Payment Frequen SemiannualInterest Payment tes 10 April an10 OctoberMaturity te 10 October 2016y Count Convention 30/360AnnuYielto-Maturity 4%The full prithBonG will settle on 16 June 2014 is closest to: A.102.36. B.103.10. C.103.65. B is correct.The bons full priis 103.10. The priis terminein the following manner:of the beginning of the coupon perioon 10 April 2014, there are 2.5 years (5semiannuperio) to maturity. These five semiannuperio occur on 10 October2014, 10 April 2015, 10 October 2015, 10 April 2016 an10 October 2016. PV=PMT(1+r)1+PMT(1+r)2+PMT(1+r)3+PMT(1+r)4+PMT+FV(1+r)5PV=\frac{PMT}{{(1+r)}^1}+\frac{PMT}{{(1+r)}^2}+\frac{PMT}{{(1+r)}^3}+\frac{PMT}{{(1+r)}^4}+\frac{PMT+FV}{{(1+r)}^5}PV=(1+r)1PMT​+(1+r)2PMT​+(1+r)3PMT​+(1+r)4PMT​+(1+r)5PMT+FV​PV=2.5(1+0.02)1+2.5(1+0.02)2+2.5(1+0.02)3+2.5(1+0.02)4+2.5+100(1+0.02)5PV=\frac{2.5}{{(1+0.02)}^1}+\frac{2.5}{{(1+0.02)}^2}+\frac{2.5}{{(1+0.02)}^3}+\frac{2.5}{{(1+0.02)}^4}+\frac{2.5\text{+}100}{{(1+0.02)}^5}PV=(1+0.02)12.5​+(1+0.02)22.5​+(1+0.02)32.5​+(1+0.02)42.5​+(1+0.02)52.5+100​PV = 2.45 + 2.40 + 2.36 + 2.31 + 92.84 = 102.36The accrueinterest periois intifie66/180. The number of ys between10April2014 an16 June 2014 is 66 ys baseon the 30/360 y count convention. (This is 20ys remaining in April + 30 ys in M+ 16 ys in June = 66 ys total). The number of ys between coupon perio is assumeto 180 ys using the 30/360 y convention.PVFull=PV×(1 +r)66/180PV^{Full}=PV\times{(1\text{ }+r)}^{66/180}PVFull=PV×(1 +r)66/180PVFull= 102.36×(1.02)66/180= 103.10PV^{Full}=\text{ }102.36\times{(1.02)}^{66/180}=\text{ }103.10PVFull= 102.36×(1.02)66/180= 103.10考点flpri full price解析首先,我们将未来五笔现金流折现到2014.4.10,得到现值之和为102.36。N=5,PMT=2.5,I/Y=2,FV=100,求得PV=102.36然后再将这个数值复利到2014.6.16,得到full price为103.10,故B正确。我们之所以没有直接将未来五笔现金流折到2014.6.16,是因为五笔现金流的时间间隔不同,后面四笔现金流时间间隔是半年,而从6.16到10.10之间并不是半年。因此现金流就不是一个年金的形式,我们就没有办法用计算器直接求PV了。 N=5,PMT=2.5,I/Y=2,FV=100,这种情况下如果把FV输入为-100,算出的PV就是78.789,请问是为什么?所以是否FV都是输入为正,PV输入都是为负,才可以得出正确结果?谢谢

2024-09-10 20:19 1 · 回答

NO.PZ2016031001000069问题如下BonG, scribein the exhibit below, is solfor settlement on 16 June 2014.AnnuCoupon 5%Coupon Payment Frequen SemiannualInterest Payment tes 10 April an10 OctoberMaturity te 10 October 2016y Count Convention 30/360AnnuYielto-Maturity 4%The full prithBonG will settle on 16 June 2014 is closest to:A.102.36.B.103.10.C.103.65. B is correct.The bons full priis 103.10. The priis terminein the following manner:of the beginning of the coupon perioon 10 April 2014, there are 2.5 years (5semiannuperio) to maturity. These five semiannuperio occur on 10 October2014, 10 April 2015, 10 October 2015, 10 April 2016 an10 October 2016. PV=PMT(1+r)1+PMT(1+r)2+PMT(1+r)3+PMT(1+r)4+PMT+FV(1+r)5PV=\frac{PMT}{{(1+r)}^1}+\frac{PMT}{{(1+r)}^2}+\frac{PMT}{{(1+r)}^3}+\frac{PMT}{{(1+r)}^4}+\frac{PMT+FV}{{(1+r)}^5}PV=(1+r)1PMT​+(1+r)2PMT​+(1+r)3PMT​+(1+r)4PMT​+(1+r)5PMT+FV​PV=2.5(1+0.02)1+2.5(1+0.02)2+2.5(1+0.02)3+2.5(1+0.02)4+2.5+100(1+0.02)5PV=\frac{2.5}{{(1+0.02)}^1}+\frac{2.5}{{(1+0.02)}^2}+\frac{2.5}{{(1+0.02)}^3}+\frac{2.5}{{(1+0.02)}^4}+\frac{2.5\text{+}100}{{(1+0.02)}^5}PV=(1+0.02)12.5​+(1+0.02)22.5​+(1+0.02)32.5​+(1+0.02)42.5​+(1+0.02)52.5+100​PV = 2.45 + 2.40 + 2.36 + 2.31 + 92.84 = 102.36The accrueinterest periois intifie66/180. The number of ys between10April2014 an16 June 2014 is 66 ys baseon the 30/360 y count convention. (This is 20ys remaining in April + 30 ys in M+ 16 ys in June = 66 ys total). The number of ys between coupon perio is assumeto 180 ys using the 30/360 y convention.PVFull=PV×(1 +r)66/180PV^{Full}=PV\times{(1\text{ }+r)}^{66/180}PVFull=PV×(1 +r)66/180PVFull= 102.36×(1.02)66/180= 103.10PV^{Full}=\text{ }102.36\times{(1.02)}^{66/180}=\text{ }103.10PVFull= 102.36×(1.02)66/180= 103.10考点flpri full price解析首先,我们将未来五笔现金流折现到2014.4.10,得到现值之和为102.36。N=5,PMT=2.5,I/Y=2,FV=100,求得PV=102.36然后再将这个数值复利到2014.6.16,得到full price为103.10,故B正确。我们之所以没有直接将未来五笔现金流折到2014.6.16,是因为五笔现金流的时间间隔不同,后面四笔现金流时间间隔是半年,而从6.16到10.10之间并不是半年。因此现金流就不是一个年金的形式,我们就没有办法用计算器直接求PV了。 最后为什么不是102。36 x (1+4%)的66/360次方?

2024-08-10 22:46 2 · 回答

NO.PZ2016031001000069 问题如下 BonG, scribein the exhibit below, is solfor settlement on 16 June 2014.AnnuCoupon 5%Coupon Payment Frequen SemiannualInterest Payment tes 10 April an10 OctoberMaturity te 10 October 2016y Count Convention 30/360AnnuYielto-Maturity 4%The full prithBonG will settle on 16 June 2014 is closest to: A.102.36. B.103.10. C.103.65. B is correct.The bons full priis 103.10. The priis terminein the following manner:of the beginning of the coupon perioon 10 April 2014, there are 2.5 years (5semiannuperio) to maturity. These five semiannuperio occur on 10 October2014, 10 April 2015, 10 October 2015, 10 April 2016 an10 October 2016. PV=PMT(1+r)1+PMT(1+r)2+PMT(1+r)3+PMT(1+r)4+PMT+FV(1+r)5PV=\frac{PMT}{{(1+r)}^1}+\frac{PMT}{{(1+r)}^2}+\frac{PMT}{{(1+r)}^3}+\frac{PMT}{{(1+r)}^4}+\frac{PMT+FV}{{(1+r)}^5}PV=(1+r)1PMT​+(1+r)2PMT​+(1+r)3PMT​+(1+r)4PMT​+(1+r)5PMT+FV​PV=2.5(1+0.02)1+2.5(1+0.02)2+2.5(1+0.02)3+2.5(1+0.02)4+2.5+100(1+0.02)5PV=\frac{2.5}{{(1+0.02)}^1}+\frac{2.5}{{(1+0.02)}^2}+\frac{2.5}{{(1+0.02)}^3}+\frac{2.5}{{(1+0.02)}^4}+\frac{2.5\text{+}100}{{(1+0.02)}^5}PV=(1+0.02)12.5​+(1+0.02)22.5​+(1+0.02)32.5​+(1+0.02)42.5​+(1+0.02)52.5+100​PV = 2.45 + 2.40 + 2.36 + 2.31 + 92.84 = 102.36The accrueinterest periois intifie66/180. The number of ys between10April2014 an16 June 2014 is 66 ys baseon the 30/360 y count convention. (This is 20ys remaining in April + 30 ys in M+ 16 ys in June = 66 ys total). The number of ys between coupon perio is assumeto 180 ys using the 30/360 y convention.PVFull=PV×(1 +r)66/180PV^{Full}=PV\times{(1\text{ }+r)}^{66/180}PVFull=PV×(1 +r)66/180PVFull= 102.36×(1.02)66/180= 103.10PV^{Full}=\text{ }102.36\times{(1.02)}^{66/180}=\text{ }103.10PVFull= 102.36×(1.02)66/180= 103.10考点flpri full price解析首先,我们将未来五笔现金流折现到2014.4.10,得到现值之和为102.36。N=5,PMT=2.5,I/Y=2,FV=100,求得PV=102.36然后再将这个数值复利到2014.6.16,得到full price为103.10,故B正确。我们之所以没有直接将未来五笔现金流折到2014.6.16,是因为五笔现金流的时间间隔不同,后面四笔现金流时间间隔是半年,而从6.16到10.10之间并不是半年。因此现金流就不是一个年金的形式,我们就没有办法用计算器直接求PV了。 为什么不是full price=10/4/2014的PV+accrueinterest?

2024-07-23 22:03 1 · 回答

NO.PZ2016031001000069 问题如下 BonG, scribein the exhibit below, is solfor settlement on 16 June 2014.AnnuCoupon 5%Coupon Payment Frequen SemiannualInterest Payment tes 10 April an10 OctoberMaturity te 10 October 2016y Count Convention 30/360AnnuYielto-Maturity 4%The full prithBonG will settle on 16 June 2014 is closest to: A.102.36. B.103.10. C.103.65. B is correct.The bons full priis 103.10. The priis terminein the following manner:of the beginning of the coupon perioon 10 April 2014, there are 2.5 years (5semiannuperio) to maturity. These five semiannuperio occur on 10 October2014, 10 April 2015, 10 October 2015, 10 April 2016 an10 October 2016. PV=PMT(1+r)1+PMT(1+r)2+PMT(1+r)3+PMT(1+r)4+PMT+FV(1+r)5PV=\frac{PMT}{{(1+r)}^1}+\frac{PMT}{{(1+r)}^2}+\frac{PMT}{{(1+r)}^3}+\frac{PMT}{{(1+r)}^4}+\frac{PMT+FV}{{(1+r)}^5}PV=(1+r)1PMT​+(1+r)2PMT​+(1+r)3PMT​+(1+r)4PMT​+(1+r)5PMT+FV​PV=2.5(1+0.02)1+2.5(1+0.02)2+2.5(1+0.02)3+2.5(1+0.02)4+2.5+100(1+0.02)5PV=\frac{2.5}{{(1+0.02)}^1}+\frac{2.5}{{(1+0.02)}^2}+\frac{2.5}{{(1+0.02)}^3}+\frac{2.5}{{(1+0.02)}^4}+\frac{2.5\text{+}100}{{(1+0.02)}^5}PV=(1+0.02)12.5​+(1+0.02)22.5​+(1+0.02)32.5​+(1+0.02)42.5​+(1+0.02)52.5+100​PV = 2.45 + 2.40 + 2.36 + 2.31 + 92.84 = 102.36The accrueinterest periois intifie66/180. The number of ys between10April2014 an16 June 2014 is 66 ys baseon the 30/360 y count convention. (This is 20ys remaining in April + 30 ys in M+ 16 ys in June = 66 ys total). The number of ys between coupon perio is assumeto 180 ys using the 30/360 y convention.PVFull=PV×(1 +r)66/180PV^{Full}=PV\times{(1\text{ }+r)}^{66/180}PVFull=PV×(1 +r)66/180PVFull= 102.36×(1.02)66/180= 103.10PV^{Full}=\text{ }102.36\times{(1.02)}^{66/180}=\text{ }103.10PVFull= 102.36×(1.02)66/180= 103.10考点flpri full price解析首先,我们将未来五笔现金流折现到2014.4.10,得到现值之和为102.36。N=5,PMT=2.5,I/Y=2,FV=100,求得PV=102.36然后再将这个数值复利到2014.6.16,得到full price为103.10,故B正确。我们之所以没有直接将未来五笔现金流折到2014.6.16,是因为五笔现金流的时间间隔不同,后面四笔现金流时间间隔是半年,而从6.16到10.10之间并不是半年。因此现金流就不是一个年金的形式,我们就没有办法用计算器直接求PV了。 我好像跟什么题目搞混了,有道题是再投资的,什么时候才会再投资来着?

2024-07-23 21:24 2 · 回答