开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

梦梦 · 2024年05月07日

有两处不太明白

NO.PZ2020011101000010

问题如下:

In the covariance-stationary AR(2), Yt=0.3+1.4Yt10.6Yt2+ϵtY_t = 0.3 + 1.4Y_{t - 1} - 0.6Y_{t - 2} + \epsilon_t, where ϵtWN(0,σ2)\epsilon_t ∼ WN(0, \sigma^2), what is the long-run mean E[Yt]E[Y_t] and variance V[Yt]V[Y_t]?

解释:

Because this process is covariance-stationary

E[Yt]=μ=0.311.4(0.6)=1.5E[Y_t]=\mu=\frac{0.3}{1-1.4-(-0.6)}=1.5

V[Yt]=γ0=0.3211.4(0.6)=0.45V[Y_t]=\gamma_0=\frac{0.3^2}{1-1.4-(-0.6)}=0.45


老师好,e的方差为什么是0.3的平方?还有分母为什么不是1-Yt-1系数的平方-Yt—2系数的平方?


1 个答案

品职答疑小助手雍 · 2024年05月08日

同学你好,这题先不用管了,原版书课后的,出的太随意了,有一些很明显的错误和矛盾,分子在例题里没有直接带常数项,这里带了;分布的计算应该先算两个ρ。

如果分子带常数项的话就像下图