开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

华赞 · 2024年04月30日

请教关于u的问题

NO.PZ2020010304000033

问题如下:

Suppose four independent random variables X1, X2, X3, and X4 all have mean u = 1 and variances of 0.5, 0.5, 2, and 2, respectively.

Compute the expectation and variance of 0.4X1+0.4X2+0.1X3+0.1X40.4X_1+0.4X_2+0.1X_3+0.1X_4

解释:

The expectation is computed

E[0.4X1+0.4X2+0.1X3+0.1X4]

=0.4EX1+0.4EX2+0.1EX3+0.1EX4

=0.4u+0.4u+0.1u+0.1u

=u=1

This estimator is unbiased.

The variance of the sum is the sum of the variances because the random variables are independent.

Var[0.4X1+0.4X2+0.1X3+0.1X4]

=0.16Var[X1]+0.16Var[X2]+0.01Var[X3]+0.01Var[X4]

=0.16*0.5+0.16*0.5+0.01*2+0.01*2

=0.2

为何0.4EX1+0.4EX2+0.1EX3+0.1EX4

不同的EX都是同一个u

1 个答案
已采纳答案

李坏_品职助教 · 2024年04月30日

嗨,爱思考的PZer你好:


题目开头告诉我们:four independent random variables X1, X2, X3, and X4 all have mean u = 1 ,

意思是X1到X4这四个序列,都有同样的均值。也就是E(X1) = E(X2) = E(X3) = E(X4)=u=1


----------------------------------------------
努力的时光都是限量版,加油!