NO.PZ2020010801000009
问题如下:
Find the OLS estimators for the following data:
选项:
解释:
Doing the basic needed calculations:
看了计算器基础课,讲了怎么录入两组变量值和基本统计数值的计算
请问计算器能直接带出来这题要求的答案吗
如果不能, 输入两组变量后, 计算器最多能算到哪一步呢
NO.PZ2020010801000009问题如下Finthe OLS estimators for the following t ing the basic neecalculations: β^=∑(Xi−X‾)(Yi−Y‾)∑(Xi−X‾)2=20.69/8.25=2.508\wihat\beta = \frac{\sum (X_i-\overline X)(Y_i-\overline Y)}{\sum (X_i-\overline X)^2}=20.69/8.25=2.508β=∑(Xi−X)2∑(Xi−X)(Yi−Y)=20.69/8.25=2.508α^=Y‾−β^X‾=9.365−2.508∗4.5=−1.921\wihat\alpha = \overline Y-\wihat\beta \overline X=9.365-2.508*4.5=-1.921α=Y−βX=9.365−2.508∗4.5=−1.921 老师,这道题用计算 2n7 分别输入X和Y的值,再按2n8,选lin,一直按向下的箭头,得出a=-2.886279,b=2.631779。和答案完全不一样,是哪里错了吗
NO.PZ2020010801000009问题如下Finthe OLS estimators for the following t ing the basic neecalculations: β^=∑(Xi−X‾)(Yi−Y‾)∑(Xi−X‾)2=20.69/8.25=2.508\wihat\beta = \frac{\sum (X_i-\overline X)(Y_i-\overline Y)}{\sum (X_i-\overline X)^2}=20.69/8.25=2.508β=∑(Xi−X)2∑(Xi−X)(Yi−Y)=20.69/8.25=2.508α^=Y‾−β^X‾=9.365−2.508∗4.5=−1.921\wihat\alpha = \overline Y-\wihat\beta \overline X=9.365-2.508*4.5=-1.921α=Y−βX=9.365−2.508∗4.5=−1.921 想问一下 考试会出需要算这么多的题吗
NO.PZ2020010801000009问题如下Finthe OLS estimators for the following t ing the basic neecalculations: β^=∑(Xi−X‾)(Yi−Y‾)∑(Xi−X‾)2=20.69/8.25=2.508\wihat\beta = \frac{\sum (X_i-\overline X)(Y_i-\overline Y)}{\sum (X_i-\overline X)^2}=20.69/8.25=2.508β=∑(Xi−X)2∑(Xi−X)(Yi−Y)=20.69/8.25=2.508α^=Y‾−β^X‾=9.365−2.508∗4.5=−1.921\wihat\alpha = \overline Y-\wihat\beta \overline X=9.365-2.508*4.5=-1.921α=Y−βX=9.365−2.508∗4.5=−1.921 有x和y两组数据,请问为什么不能通过直接按计算器得到a和b呢?
NO.PZ2020010801000009 问题如下 Finthe OLS estimators for the following t ing the basic neecalculations: β^=∑(Xi−X‾)(Yi−Y‾)∑(Xi−X‾)2=20.69/8.25=2.508\wihat\beta = \frac{\sum (X_i-\overline X)(Y_i-\overline Y)}{\sum (X_i-\overline X)^2}=20.69/8.25=2.508β=∑(Xi−X)2∑(Xi−X)(Yi−Y)=20.69/8.25=2.508α^=Y‾−β^X‾=9.365−2.508∗4.5=−1.921\wihat\alpha = \overline Y-\wihat\beta \overline X=9.365-2.508*4.5=-1.921α=Y−βX=9.365−2.508∗4.5=−1.921 老师在强化班的课程里提到OLS ESTINATORS这块时好像说主要掌握性质,所以像本题这样的计算是否有很大必要花时间去掌握呢?