开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Fate Chain · 2024年04月24日

【factor model】的正负号

NO.PZ2018123101000036

问题如下:

Exhibit 1. Three-Factor Model of Term Structure

Note: Entries indicate how yields would change for a one standard deviation increase in a factor.

Calculate the expected change in yield on the five-year bond resulting from a one standard deviation decrease in the level factor and a one standard deviation decrease in the curvature factor.

选项:

A.

decreasing by 0.8315%.

B.

decreasing by 0.0389%.

C.

increasing by 0.0389%.

解释:

C is correct.

考点:Managing Yield Curve Risks: Decompose the risk into three factors

解析:图1中的因子表示各个因子变动一个标准差对债券收益率的影响,因此对于5年期的债券,level变动一个标准差对债券收益率的影响为-0.4352%; curvature变动一个标准差对债券收益率的影响为0.3963%,因此Level降低一个标准差,Curvature降低一个标准差对债券收益率的影响为:

(1)×(0.4352%)+(1)×0.3963%=0.0389%(-1)\times(-0.4352\%)+(-1)\times0.3963\%=0.0389\%

没太看懂这个题的正负号,题目问的价格还是收益率呀,如果是价格,那么和yield是反向关系对吗

2 个答案

吴昊_品职助教 · 2024年04月25日

嗨,爱思考的PZer你好:


这是本题的假设条件,factor上升一个标准差带来的收益率变化。见红框位置。


----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

吴昊_品职助教 · 2024年04月25日

嗨,爱思考的PZer你好:


Calculate the expected change in yield,所以题目让我们求的是收益率的变化。计算的是5年期level factor和curvature factor都下降一个标准差带来的收益率变化。所以用到的是红框中的两个数据。

1、这道题是一个简化的版本,注意看表格下方的小字:Entries indicate how yields would change for a one standard deviation increase in a factor. 表格中的数据代表的是factor上升一个标准差,带来的收益率的变化。现在我们这俩factor都是下降一个标准差,所以就是(−1)×(−0.4352%)+(−1)×0.3963%

2、这道题跟书上的例题有区别,书上的例题是给了各个期限的久期和权重,以及各个期限的△y,所以要用△P/P=-D*△y这个公式来计算(涉及到portfolio还要考虑各个时间点的权重w)

3、我们这道题中没有给到久期,所以没有办法从利率的变化推导到债券价格的变化。并不是一单位利率的变化就带来一单位的债券价格变化,其中还牵涉到债券价格对于利率的敏感程度Duration。因此本题没有办法求“对价格的影响”。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

  • 2

    回答
  • 0

    关注
  • 227

    浏览
相关问题

NO.PZ2018123101000036 问题如下 Exhibit 1. Three-Factor Mol of Term Structure Note: Entries incate how yiel woulchange for a one stanrviation increase in a factor. Calculate the expectechange in yielon the five-yebonresulting from a one stanrviation crease in the level factor ana one stanrviation crease in the curvature factor. creasing 0.8315%. creasing 0.0389%. increasing 0.0389%. C is correct.考点Managing YielCurve Risks: compose the risk into three factors解析图1中的因子表示各个因子变动一个标准差对债券收益率的影响,因此对于5年期的债券,level变动一个标准差对债券收益率的影响为-0.4352%; curvature变动一个标准差对债券收益率的影响为0.3963%,因此Level降低一个标准差,Curvature降低一个标准差对债券收益率的影响为(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%(-1)\times(-0.4352\%)+(-1)\times0.3963\%=0.0389\%(−1)×(−0.4352%)+(−1)×0.3963%=0.0389% 请问答案解析中公式(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%,这个(-1)是什么意思?如何理解?

2023-09-30 20:34 2 · 回答

NO.PZ2018123101000036 问题如下 Exhibit 1. Three-Factor Mol of Term Structure Note: Entries incate how yiel woulchange for a one stanrviation increase in a factor. Calculate the expectechange in yielon the five-yebonresulting from a one stanrviation crease in the level factor ana one stanrviation crease in the curvature factor. creasing 0.8315%. creasing 0.0389%. increasing 0.0389%. C is correct.考点Managing YielCurve Risks: compose the risk into three factors解析图1中的因子表示各个因子变动一个标准差对债券收益率的影响,因此对于5年期的债券,level变动一个标准差对债券收益率的影响为-0.4352%; curvature变动一个标准差对债券收益率的影响为0.3963%,因此Level降低一个标准差,Curvature降低一个标准差对债券收益率的影响为(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%(-1)\times(-0.4352\%)+(-1)\times0.3963\%=0.0389\%(−1)×(−0.4352%)+(−1)×0.3963%=0.0389% 老师,这个符号如何考虑?我想的是表格内部显示的是增加的量,那现在题目是问crease,我就-(-0.4)-0.3【具体数字忘了】,最后是正的,就是增加, 这样做对么?

2023-08-08 13:58 1 · 回答

NO.PZ2018123101000036 问题如下 Exhibit 1. Three-Factor Mol of Term Structure Note: Entries incate how yiel woulchange for a one stanrviation increase in a factor. Calculate the expectechange in yielon the five-yebonresulting from a one stanrviation crease in the level factor ana one stanrviation crease in the curvature factor. creasing 0.8315%. creasing 0.0389%. increasing 0.0389%. C is correct.考点Managing YielCurve Risks: compose the risk into three factors解析图1中的因子表示各个因子变动一个标准差对债券收益率的影响,因此对于5年期的债券,level变动一个标准差对债券收益率的影响为-0.4352%; curvature变动一个标准差对债券收益率的影响为0.3963%,因此Level降低一个标准差,Curvature降低一个标准差对债券收益率的影响为(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%(-1)\times(-0.4352\%)+(-1)\times0.3963\%=0.0389\%(−1)×(−0.4352%)+(−1)×0.3963%=0.0389% 例题中,如果factor考虑的是curvature,我们求△P/P的话,只有1年和10年两个bon影响,所以用△P/P=-(△y1**w1+△y10*0*w10)=-(1%*1*0.333+1%*10*0.333)=-3.667%,也就是curvature每变动1个单位,影响价格-3.667%。但题中求的是5年bon△y变化,且假设只有level和curvature有影响,就竖着看5年的数字,找到-0.4352%和0.3963%,因为增加1个标准差,level下降,-0.4352%,curvature增加0.3963%,要求level下降1个标准差和curvature下降1一个标准差,就是-(-0.4352%)-0.3963%=0.0383%,就是提高0.0383%,因为没问对portfolio的影响,所以不用乘以权重w1,也没问价格变动,所以不用乘以ration。

2023-07-29 19:07 1 · 回答

NO.PZ2018123101000036 问题如下 Exhibit 1. Three-Factor Mol of Term Structure Note: Entries incate how yiel woulchange for a one stanrviation increase in a factor. Calculate the expectechange in yielon the five-yebonresulting from a one stanrviation crease in the level factor ana one stanrviation crease in the curvature factor. creasing 0.8315%. creasing 0.0389%. increasing 0.0389%. C is correct.考点Managing YielCurve Risks: compose the risk into three factors解析图1中的因子表示各个因子变动一个标准差对债券收益率的影响,因此对于5年期的债券,level变动一个标准差对债券收益率的影响为-0.4352%; curvature变动一个标准差对债券收益率的影响为0.3963%,因此Level降低一个标准差,Curvature降低一个标准差对债券收益率的影响为(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%(-1)\times(-0.4352\%)+(-1)\times0.3963\%=0.0389\%(−1)×(−0.4352%)+(−1)×0.3963%=0.0389% 三因素的公式中,每一项前面都是负号(老师上课讲的意思是收益率增长1单位,其实价格会下降,所以是负号),但在实际做题中,还是得看具体变化的方向,不能直接套公式吧?

2023-06-28 23:09 1 · 回答