开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

游得过 · 2024年04月21日

为啥不选C,专有名词?

* 问题详情,请 查看题干

NO.PZ202208300200000603

问题如下:

Khan’s idea for the conversion of the data is most likely an example of:

选项:

A.term frequency. B.one hot encoding. C.name entity recognition.

解释:

Solution

B is correct. The process of decomposing a single categorical feature with multiple values, in this case denoted by the multiple types of precipitation, into individual features by type (e.g., is_drizzle, is_rain, is_snow), and recording the results in binary form (0 or 1) is called one hot encoding.

A is incorrect. Term frequency is a form of basic text statistics that determines the ratio of the number of times a given word (token) occurs in all the texts in the dataset relative to the total number of tokens in the dataset.

C is incorrect. Name entity recognition is a process when using an existing library or package that can be applied in many programming languages to analyze the individual tokens and their surrounding semantics to tag an object class to the token, such as organization, location, and date.

为啥不选C,专有名词?

1 个答案
已采纳答案

袁园_品职助教 · 2024年04月21日

嗨,努力学习的PZer你好:


根据基础班P359,命名实体识别是分析单个标记及其周围的语义,同时参照其词典来给标记标上对象类别。例如,货币(MONEY)、时间(TIME)、百分比(PERCENT)和组织(ORGANIZATION)。而题目中说的是0、1标签,这明显不符合哦。NER做起来应该是这样的

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!