开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Mengooo · 2018年07月24日

问一道题:NO.PZ2016082406000024 [ FRM II ]

问题如下图:

选项:

A.

B.

C.

D.

解释:

老师我重新传了下图片,您看下这个方法哪里不对

1 个答案
已采纳答案

orange品职答疑助手 · 2018年07月25日

同学你好,你可能把题目意思理解错了,它这里不是违约,是被降级的概率。被降到不同的信用级别,所以信用风险溢价不一样,所以折现率不一样,所以价格不一样。把三种情况的价格分别算出来,然后乘上三种情况分别对应的概率,就可以得到它相应的价格了。

  • 1

    回答
  • 0

    关注
  • 402

    浏览
相关问题

NO.PZ2016082406000024 A two-yezero-coupon bonissueACo. is currently rateThe market expects thone yefrom now the probability ththe rating of Aremains is wngrato BBor is upgrato are, respectively, 80%, 15%, an5%. Suppose ththe risk-free rate is fl1% anthcret sprea for AA-, A-, anBBB-rateare fl80, 150, an280 basis points, respectively. All rates are compounannually. Whis the best approximation of the expectevalue of the zero-coupon bonone yefrom now? 97.41 97.37 94.89 92.44 ANSWER: A After one year, the bonbecomes a one-yezero-coupon bon The respective values are, for AanBBPAA=1001+0.0180=98.23P_{AA}=\frac{100}{1+0.0180}=98.23PAA​=1+0.0180100​=98.23, 97.56, an96.34. Note thprices are lower for lower ratings. The expectevalue is given P=∑πiPi=5%×98.23+80%×97.56+15%×96.34=97.41P=\sum\pi_iP_i=5\%\times98.23+80\%\times97.56+15\%\times96.34=97.41P=∑πi​Pi​=5%×98.23+80%×97.56+15%×96.34=97.41. 答案里为什么没有折2年现值呀?

2021-03-27 12:38 1 · 回答

A two-yezero-coupon bonissueACo. is currently rateThe market expects thone yefrom now the probability ththe rating of Aremains is wngrato BBor is upgrato are, respectively, 80%, 15%, an5%. Suppose ththe risk-free rate is fl1% anthcret sprea for AA-, A-, anBBB-rateare fl80, 150, an280 basis points, respectively. All rates are compounannually. Whis the best approximation of the expectevalue of the zero-coupon bonone yefrom now? 97.41 97.37 94.89 92.44 ANSWER: A After one year, the bonbecomes a one-yezero-coupon bon The respective values are, for AanBBPAA=1001+0.0180=98.23P_{AA}=\frac{100}{1+0.0180}=98.23PAA​=1+0.0180100​=98.23, 97.56, an96.34. Note thprices are lower for lower ratings. The expectevalue is given P=∑πiPi=5%×98.23+80%×97.56+15%×96.34=97.41P=\sum\pi_iP_i=5\%\times98.23+80\%\times97.56+15\%\times96.34=97.41P=∑πi​Pi​=5%×98.23+80%×97.56+15%×96.34=97.41. 还是不明白为什么这个折现率就是1% + AA到AA-的80= 1.8%了? 不是还有其他两个sprea?

2020-10-17 11:31 1 · 回答

A two-yezero-coupon bonissueACo. is currently rateThe market expects thone yefrom now the probability ththe rating of Aremains is wngrato BBor is upgrato are, respectively, 80%, 15%, an5%. Suppose ththe risk-free rate is fl1% anthcret sprea for AA-, A-, anBBB-rateare fl80, 150, an280 basis points, respectively. All rates are compounannually. Whis the best approximation of the expectevalue of the zero-coupon bonone yefrom now? 97.41 97.37 94.89 92.44 ANSWER: A After one year, the bonbecomes a one-yezero-coupon bon The respective values are, for AanBBPAA=1001+0.0180=98.23P_{AA}=\frac{100}{1+0.0180}=98.23PAA​=1+0.0180100​=98.23, 97.56, an96.34. Note thprices are lower for lower ratings. The expectevalue is given P=∑πiPi=5%×98.23+80%×97.56+15%×96.34=97.41P=\sum\pi_iP_i=5\%\times98.23+80\%\times97.56+15\%\times96.34=97.41P=∑πi​Pi​=5%×98.23+80%×97.56+15%×96.34=97.41. PAA=100/(1+0.0180) ​=98.23, 97.56, an96.34. 0.018是怎么来的啊老师请问下 还有他是A变A,AA,BBB.和这些A-。。。这些的sprea什么关系

2020-08-20 01:32 2 · 回答

A two-yezero-coupon bonissueACo. is currently rateThe market expects thone yefrom now the probability ththe rating of Aremains is wngrato BBor is upgrato are, respectively, 80%, 15%, an5%. Suppose ththe risk-free rate is fl1% anthcret sprea for AA-, A-, anBBB-rateare fl80, 150, an280 basis points, respectively. All rates are compounannually. Whis the best approximation of the expectevalue of the zero-coupon bonone yefrom now? 97.41 97.37 94.89 92.44 ANSWER: A After one year, the bonbecomes a one-yezero-coupon bon The respective values are, for AanBBPAA=1001+0.0180=98.23P_{AA}=\frac{100}{1+0.0180}=98.23PAA​=1+0.0180100​=98.23, 97.56, an96.34. Note thprices are lower for lower ratings. The expectevalue is given P=∑πiPi=5%×98.23+80%×97.56+15%×96.34=97.41P=\sum\pi_iP_i=5\%\times98.23+80\%\times97.56+15\%\times96.34=97.41P=∑πi​Pi​=5%×98.23+80%×97.56+15%×96.34=97.41. 这里面说risk free rate is fl1%,有什么意义? “is flat”这句话是什么意思。。我还以为这是inflation rate.

2020-07-26 13:18 1 · 回答

A two-yezero-coupon bonissueACo. is currently rateThe market expects thone yefrom now the probability ththe rating of Aremains is wngrato BBor is upgrato are, respectively, 80%, 15%, an5%. Suppose ththe risk-free rate is fl1% anthcret sprea for AA-, A-, anBBB-rateare fl80, 150, an280 basis points, respectively. All rates are compounannually. Whis the best approximation of the expectevalue of the zero-coupon bonone yefrom now? 97.41 97.37 94.89 92.44 ANSWER: A After one year, the bonbecomes a one-yezero-coupon bon The respective values are, for AanBBPAA=1001+0.0180=98.23P_{AA}=\frac{100}{1+0.0180}=98.23PAA​=1+0.0180100​=98.23, 97.56, an96.34. Note thprices are lower for lower ratings. The expectevalue is given P=∑πiPi=5%×98.23+80%×97.56+15%×96.34=97.41P=\sum\pi_iP_i=5\%\times98.23+80\%\times97.56+15\%\times96.34=97.41P=∑πi​Pi​=5%×98.23+80%×97.56+15%×96.34=97.41. compounannually,不是连续复利形式吗,为什么是用单利算出来的

2020-02-16 12:25 1 · 回答