开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Mengooo · 2018年07月24日

问一道题:NO.PZ2016082406000024 [ FRM II ]

问题如下图:

选项:

A.

B.

C.

D.

解释:

老师帮忙看一下我的方法哪里不对呢,我是分别把PD和credit spread取了平均然后利用债券价格的公式算的

2 个答案

orange品职答疑助手 · 2019年09月06日

对的,分别求出债券价格,再对价格加权平均,才是最准确的

orange品职答疑助手 · 2018年07月24日

同学,没有看见你的图,麻烦你重新上传一下呢

如果你是把credit spread按照三个概率加权平均的,那这样做是不可以的,因为它是在分母上、不是线性的。三组情况下的价格,然后按照不同概率来加权平均,这样才有经济意义。

陈晓昭 · 2019年09月05日

是表示不可以把spread加权平均后直接和Rf相加折现求债券价格是嘛?

  • 2

    回答
  • 0

    关注
  • 390

    浏览
相关问题

NO.PZ2016082406000024 A two-yezero-coupon bonissueACo. is currently rateThe market expects thone yefrom now the probability ththe rating of Aremains is wngrato BBor is upgrato are, respectively, 80%, 15%, an5%. Suppose ththe risk-free rate is fl1% anthcret sprea for AA-, A-, anBBB-rateare fl80, 150, an280 basis points, respectively. All rates are compounannually. Whis the best approximation of the expectevalue of the zero-coupon bonone yefrom now? 97.41 97.37 94.89 92.44 ANSWER: A After one year, the bonbecomes a one-yezero-coupon bon The respective values are, for AanBBPAA=1001+0.0180=98.23P_{AA}=\frac{100}{1+0.0180}=98.23PAA​=1+0.0180100​=98.23, 97.56, an96.34. Note thprices are lower for lower ratings. The expectevalue is given P=∑πiPi=5%×98.23+80%×97.56+15%×96.34=97.41P=\sum\pi_iP_i=5\%\times98.23+80\%\times97.56+15\%\times96.34=97.41P=∑πi​Pi​=5%×98.23+80%×97.56+15%×96.34=97.41. 答案里为什么没有折2年现值呀?

2021-03-27 12:38 1 · 回答

A two-yezero-coupon bonissueACo. is currently rateThe market expects thone yefrom now the probability ththe rating of Aremains is wngrato BBor is upgrato are, respectively, 80%, 15%, an5%. Suppose ththe risk-free rate is fl1% anthcret sprea for AA-, A-, anBBB-rateare fl80, 150, an280 basis points, respectively. All rates are compounannually. Whis the best approximation of the expectevalue of the zero-coupon bonone yefrom now? 97.41 97.37 94.89 92.44 ANSWER: A After one year, the bonbecomes a one-yezero-coupon bon The respective values are, for AanBBPAA=1001+0.0180=98.23P_{AA}=\frac{100}{1+0.0180}=98.23PAA​=1+0.0180100​=98.23, 97.56, an96.34. Note thprices are lower for lower ratings. The expectevalue is given P=∑πiPi=5%×98.23+80%×97.56+15%×96.34=97.41P=\sum\pi_iP_i=5\%\times98.23+80\%\times97.56+15\%\times96.34=97.41P=∑πi​Pi​=5%×98.23+80%×97.56+15%×96.34=97.41. 还是不明白为什么这个折现率就是1% + AA到AA-的80= 1.8%了? 不是还有其他两个sprea?

2020-10-17 11:31 1 · 回答

A two-yezero-coupon bonissueACo. is currently rateThe market expects thone yefrom now the probability ththe rating of Aremains is wngrato BBor is upgrato are, respectively, 80%, 15%, an5%. Suppose ththe risk-free rate is fl1% anthcret sprea for AA-, A-, anBBB-rateare fl80, 150, an280 basis points, respectively. All rates are compounannually. Whis the best approximation of the expectevalue of the zero-coupon bonone yefrom now? 97.41 97.37 94.89 92.44 ANSWER: A After one year, the bonbecomes a one-yezero-coupon bon The respective values are, for AanBBPAA=1001+0.0180=98.23P_{AA}=\frac{100}{1+0.0180}=98.23PAA​=1+0.0180100​=98.23, 97.56, an96.34. Note thprices are lower for lower ratings. The expectevalue is given P=∑πiPi=5%×98.23+80%×97.56+15%×96.34=97.41P=\sum\pi_iP_i=5\%\times98.23+80\%\times97.56+15\%\times96.34=97.41P=∑πi​Pi​=5%×98.23+80%×97.56+15%×96.34=97.41. PAA=100/(1+0.0180) ​=98.23, 97.56, an96.34. 0.018是怎么来的啊老师请问下 还有他是A变A,AA,BBB.和这些A-。。。这些的sprea什么关系

2020-08-20 01:32 2 · 回答

A two-yezero-coupon bonissueACo. is currently rateThe market expects thone yefrom now the probability ththe rating of Aremains is wngrato BBor is upgrato are, respectively, 80%, 15%, an5%. Suppose ththe risk-free rate is fl1% anthcret sprea for AA-, A-, anBBB-rateare fl80, 150, an280 basis points, respectively. All rates are compounannually. Whis the best approximation of the expectevalue of the zero-coupon bonone yefrom now? 97.41 97.37 94.89 92.44 ANSWER: A After one year, the bonbecomes a one-yezero-coupon bon The respective values are, for AanBBPAA=1001+0.0180=98.23P_{AA}=\frac{100}{1+0.0180}=98.23PAA​=1+0.0180100​=98.23, 97.56, an96.34. Note thprices are lower for lower ratings. The expectevalue is given P=∑πiPi=5%×98.23+80%×97.56+15%×96.34=97.41P=\sum\pi_iP_i=5\%\times98.23+80\%\times97.56+15\%\times96.34=97.41P=∑πi​Pi​=5%×98.23+80%×97.56+15%×96.34=97.41. 这里面说risk free rate is fl1%,有什么意义? “is flat”这句话是什么意思。。我还以为这是inflation rate.

2020-07-26 13:18 1 · 回答

A two-yezero-coupon bonissueACo. is currently rateThe market expects thone yefrom now the probability ththe rating of Aremains is wngrato BBor is upgrato are, respectively, 80%, 15%, an5%. Suppose ththe risk-free rate is fl1% anthcret sprea for AA-, A-, anBBB-rateare fl80, 150, an280 basis points, respectively. All rates are compounannually. Whis the best approximation of the expectevalue of the zero-coupon bonone yefrom now? 97.41 97.37 94.89 92.44 ANSWER: A After one year, the bonbecomes a one-yezero-coupon bon The respective values are, for AanBBPAA=1001+0.0180=98.23P_{AA}=\frac{100}{1+0.0180}=98.23PAA​=1+0.0180100​=98.23, 97.56, an96.34. Note thprices are lower for lower ratings. The expectevalue is given P=∑πiPi=5%×98.23+80%×97.56+15%×96.34=97.41P=\sum\pi_iP_i=5\%\times98.23+80\%\times97.56+15\%\times96.34=97.41P=∑πi​Pi​=5%×98.23+80%×97.56+15%×96.34=97.41. compounannually,不是连续复利形式吗,为什么是用单利算出来的

2020-02-16 12:25 1 · 回答