开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

eva · 2024年03月27日

beta如何计算?看不明白

NO.PZ2022070603000008

问题如下:

An investment advisor is analyzing the range of potential expected returns of a new fund designed to replicate the directional moves of the China Shanghai Composite Stock Market Index (SHANGHAI) but with twice the volatility of the index. SHANGHAI has an expected annual return of 7.6% and a volatility of 14.0%, and the risk free rate is 3.0% per year. Assuming the correlation between the fund’s returns and that of the index is 1.0, what is the expected return of the fund using the CAPM?

选项:

A.

12.2%

B.

19.0%

C.

22.1%

D.

24.6%

解释:

中文解析:

A正确。如果CAPM成立,那么Ri = Rf + βi * (Rm – Rf).

βi决定了基金的收益率随着指数收益率的变化而变化的程度。

Ri = Rf + βi * (Rm – Rf) = 0.03 + 2.0*(0.076 – 0.03)= 0.1220 = 12.2%.

-------------------------------------------------------------------------------------------------------------------

A is correct. If the CAPM holds, then Ri = Rf + βi * (Rm – Rf).

Beta (βi), which determines how much the return of the fund fluctuates in relation to the index return is expressed as follows:

βi=Cov(Ri,Rm)σm2=Corr(Ri,Rm)σiσmσm2=Corr(Ri,Rm)σiσm{\beta_{i}=\frac{\operatorname{Cov}\left(\mathrm{R}_{i}, \mathrm{R}_{m}\right)}{\sigma_{m}^{2}}=\frac{\operatorname{Corr}\left(\mathrm{R}_{i}, \mathrm{R}_{m}\right) * \sigma_{i} \sigma_{m}}{\sigma_{m}^{2}}=\frac{\operatorname{Corr}\left(\mathrm{R}_{i}, \mathrm{R}_{m}\right) * \sigma_{i}}{\sigma_{m}}}

Where i and m denote the new fund and the index, respectively, and Ri = expected return on the fund, Rm = expected return on the index, Rf = risk-free rate, σi = volatility of the fund, σm = volatility of the index, Cov(Ri,Rm) = covariance between the fund and the index returns, and Corr(Ri,Rm) = correlation between the fund and the index returns.

If the new fund has twice the volatility of the index, then σi = 2σi = 2σm, and given that Corr(Ri,Rm) = 1.0, the beta of the new fund then becomes:

βi=Corr(Ri,Rm)2σmσm=1.02.0=2.0\beta_{i}=\frac{\operatorname{Corr}\left(\mathrm{R}_{i}, \mathrm{R}_{m}\right) * 2 \sigma_{m}}{\sigma_{m}}=1.0 * 2.0=2.0

Therefore, using CAPM, Ri = Rf + βi * (Rm – Rf) = 0.03 + 2.0*(0.076 – 0.03)

= 0.1220 = 12.2%.

 beta如何计算?看不明白,可以写过程么?

1 个答案

pzqa27 · 2024年03月28日

嗨,从没放弃的小努力你好:


原理在数学那门课里有涉及,就是代入下图中我框起来的公式即可,由于the China Shanghai Composite Stock Market Index (SHANGHAI) with twice the volatility of the index,所以分子分母刚好可以抵消一部分。


----------------------------------------------
加油吧,让我们一起遇见更好的自己!

  • 1

    回答
  • 0

    关注
  • 239

    浏览
相关问题

NO.PZ2022070603000008 问题如下 investment aisor is analyzing the range of potentiexpectereturns of a new funsigneto replicate the rectionmoves of the China ShanghComposite StoMarket Inx (SHANGHAI) but with twithe volatility of the inx. SHANGHhexpecteannureturn of 7.6% ana volatility of 14.0%, anthe risk free rate is 3.0% per year. Assuming the correlation between the funs returns anthof the inx is 1.0, whis the expectereturn of the funusing the CAPM? A.12.2% B.19.0% C.22.1% 24.6% 中文解析A正确。如果CAPM成立,那么Ri = Rf + βi * (Rm – Rf).βi决定了基金的收益率随着指数收益率的变化而变化的程度。 Ri = Rf + βi * (Rm – Rf) = 0.03 + 2.0*(0.076 – 0.03)= 0.1220 = 12.2%.-------------------------------------------------------------------------------------------------------------------A is correct. If the CAPM hol, then Ri = Rf + βi * (Rm – Rf).Beta (βi), whitermines how muthe return of the funfluctuates in relation to the inx return is expressefollows:βi=Cov⁡(Ri,Rm)σm2=Corr⁡(Ri,Rm)∗σiσmσm2=Corr⁡(Ri,Rm)∗σiσm{\beta_{i}=\frac{\operatorname{Cov}\left(\mathrm{R}_{i}, \mathrm{R}_{m}\right)}{\sigma_{m}^{2}}=\frac{\operatorname{Corr}\left(\mathrm{R}_{i}, \mathrm{R}_{m}\right) * \sigma_{i} \sigma_{m}}{\sigma_{m}^{2}}=\frac{\operatorname{Corr}\left(\mathrm{R}_{i}, \mathrm{R}_{m}\right) * \sigma_{i}}{\sigma_{m}}}βi​=σm2​Cov(Ri​,Rm​)​=σm2​Corr(Ri​,Rm​)∗σi​σm​​=σm​Corr(Ri​,Rm​)∗σi​​Where i anm note the new funanthe inx, respectively, anRi = expectereturn on the fun Rm = expectereturn on the inx, Rf = risk-free rate, σi = volatility of the fun σm = volatility of the inx, Cov(Ri,Rm) = covarianbetween the funanthe inx returns, anCorr(Ri,Rm) = correlation between the funanthe inx returns.If the new funhtwithe volatility of the inx, then σi = 2σi = 2σm, angiven thCorr(Ri,Rm) = 1.0, the beta of the new funthen becomes:βi=Corr⁡(Ri,Rm)∗2σmσm=1.0∗2.0=2.0\beta_{i}=\frac{\operatorname{Corr}\left(\mathrm{R}_{i}, \mathrm{R}_{m}\right) * 2 \sigma_{m}}{\sigma_{m}}=1.0 * 2.0=2.0βi​=σm​Corr(Ri​,Rm​)∗2σm​​=1.0∗2.0=2.0Therefore, using CAPM, Ri = Rf + βi * (Rm – Rf) = 0.03 + 2.0*(0.076 – 0.03)= 0.1220 = 12.2%. If the new funhtwithe volatility of the inx, then σi = 2σi = 2σmvolatility不是方差吗?不是σi的平方= 2倍的σm的平方?

2023-04-19 11:01 1 · 回答