开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

粗眉毛辣椒油 · 2024年03月16日

题目的意思

NO.PZ2019052801000034

问题如下:

Assume that the annual continuously compounded spot rates are: Z1=5%,Z_1=5\%, Z2=5.1%,Z_2=5.1\%, Z3=5.2%,Z_3=5.2\%,The 1.5-year bond has a $100 face value, 6% semiannual coupon payment. Calculate the bond price:

选项:

A.

$98.34.

B.

$99.73.

C.

$100.52.

D.

$101.05.

解释:

D is correct.

考点:Interest Rate

解析:

lB=3×e[(0.05/2)×1]+3×e[(0.051/2)×2]+103×e[(0.052/2)×3]=2.93+2.85+95.27=$101.05{l}B=3\times e^{\lbrack{(-0.05/2)}\times1\rbrack}+3\times e^{\lbrack{(-0.051/2)}\times2\rbrack}+103\times e^{\lbrack{(-0.052/2)}\times3\rbrack}\\=2.93+2.85+95.27=\$101.05

请问“Assume that the annual continuously compounded spot rates are: Z1=5%, Z2​=5.1%, Z3=5.2%,”这里说的是年化连续复利的折现率分别为Z1 Z2 Z3对吧?1.5year bond,每半年的现金流折现率为什么不是(Z1)/2,Z1,(Z2)/2呢?

1 个答案
已采纳答案

李坏_品职助教 · 2024年03月16日

嗨,努力学习的PZer你好:


题目条件告诉我们6% semiannual coupon payment,意思是半年付息,所以这道题的时间单位是半年为一个单位。那么Z1对应的是第一个半年0-0.5,Z2对应的是0.5-1.0, Z3对应的是1.0-1.5。


1.5年的bond,可以分为3个半年,第一个半年(0-0.5年)的年化利率是Z1,所以第一笔现金流折现=3*e^(-Z1 / 2)。

第二个半年(0.5-1)是年化利率是Z2,所以第二笔现金流=3*e^(-Z2/2 * 2). 以此类推。


当期限变化时,我们也要切换到对应期限的spot rate才可以。



----------------------------------------------
努力的时光都是限量版,加油!

  • 1

    回答
  • 0

    关注
  • 207

    浏览
相关问题

NO.PZ2019052801000034 问题如下 Assume ththe annucontinuously compounspot rates are: Z1=5%,Z_1=5\%,Z1​=5%, Z2=5.1%,Z_2=5.1\%,Z2​=5.1%, Z3=5.2%,Z_3=5.2\%,Z3​=5.2%,The 1.5-ye bonha $100 favalue, 6% semiannucoupon payment. Calculate the bonprice: A.$98.34. B.$99.73. C.$100.52. $101.05. is correct. 考点Interest Rate解析lB=3×e[(−0.05/2)×1]+3×e[(−0.051/2)×2]+103×e[(−0.052/2)×3]=2.93+2.85+95.27=$101.05{l}B=3\times e^{\lbrack{(-0.05/2)}\times1\rbrack}+3\times e^{\lbrack{(-0.051/2)}\times2\rbrack}+103\times e^{\lbrack{(-0.052/2)}\times3\rbrack}\\=2.93+2.85+95.27=\$101.05lB=3×e[(−0.05/2)×1]+3×e[(−0.051/2)×2]+103×e[(−0.052/2)×3]=2.93+2.85+95.27=$101.05 老师,这里的次方里面为什么还要乘以1,2,3?

2024-07-29 10:05 1 · 回答

NO.PZ2019052801000034问题如下Assume ththe annucontinuously compounspot rates are: Z1=5%,Z_1=5\%,Z1​=5%, Z2=5.1%,Z_2=5.1\%,Z2​=5.1%, Z3=5.2%,Z_3=5.2\%,Z3​=5.2%,The 1.5-ye bonha $100 favalue, 6% semiannucoupon payment. Calculate the bonprice: A.$98.34.B.$99.73.C.$100.52.$101.05.is correct. 考点Interest Rate解析lB=3×e[(−0.05/2)×1]+3×e[(−0.051/2)×2]+103×e[(−0.052/2)×3]=2.93+2.85+95.27=$101.05{l}B=3\times e^{\lbrack{(-0.05/2)}\times1\rbrack}+3\times e^{\lbrack{(-0.051/2)}\times2\rbrack}+103\times e^{\lbrack{(-0.052/2)}\times3\rbrack}\\=2.93+2.85+95.27=\$101.05lB=3×e[(−0.05/2)×1]+3×e[(−0.051/2)×2]+103×e[(−0.052/2)×3]=2.93+2.85+95.27=$101.05 老师您好,之前课程里讲过,yielrate是0息债利率的平均数,那我可以先(Z1+Z2+Z3)/3求出yielrate,然后用连续复利的方式求吗?但我按计算器是42?差好多

2024-06-11 16:51 2 · 回答

NO.PZ2019052801000034问题如下Assume ththe annucontinuously compounspot rates are: Z1=5%,Z_1=5\%,Z1​=5%, Z2=5.1%,Z_2=5.1\%,Z2​=5.1%, Z3=5.2%,Z_3=5.2\%,Z3​=5.2%,The 1.5-ye bonha $100 favalue, 6% semiannucoupon payment. Calculate the bonprice: A.$98.34.B.$99.73.C.$100.52.$101.05.is correct. 考点Interest Rate解析lB=3×e[(−0.05/2)×1]+3×e[(−0.051/2)×2]+103×e[(−0.052/2)×3]=2.93+2.85+95.27=$101.05{l}B=3\times e^{\lbrack{(-0.05/2)}\times1\rbrack}+3\times e^{\lbrack{(-0.051/2)}\times2\rbrack}+103\times e^{\lbrack{(-0.052/2)}\times3\rbrack}\\=2.93+2.85+95.27=\$101.05lB=3×e[(−0.05/2)×1]+3×e[(−0.051/2)×2]+103×e[(−0.052/2)×3]=2.93+2.85+95.27=$101.05 解题过程和正确答案。谢谢

2023-03-04 01:25 1 · 回答

NO.PZ2019052801000034问题如下 Assume ththe annucontinuously compounspot rates are: Z1=5%,Z_1=5\%,Z1​=5%, Z2=5.1%,Z_2=5.1\%,Z2​=5.1%, Z3=5.2%,Z_3=5.2\%,Z3​=5.2%,The 1.5-ye bonha $100 favalue, 6% semiannucoupon payment. Calculate the bonprice: A.$98.34.B.$99.73.C.$100.52.$101.05.is correct. 考点Interest Rate解析lB=3×e[(−0.05/2)×1]+3×e[(−0.051/2)×2]+103×e[(−0.052/2)×3]=2.93+2.85+95.27=$101.05{l}B=3\times e^{\lbrack{(-0.05/2)}\times1\rbrack}+3\times e^{\lbrack{(-0.051/2)}\times2\rbrack}+103\times e^{\lbrack{(-0.052/2)}\times3\rbrack}\\=2.93+2.85+95.27=\$101.05lB=3×e[(−0.05/2)×1]+3×e[(−0.051/2)×2]+103×e[(−0.052/2)×3]=2.93+2.85+95.27=$101.05 说了semiannual6%.那就是半年coupon就是六为啥是三,另外我觉得公式是下面为啥错了

2023-02-24 09:58 1 · 回答