开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

huangme7 · 2024年03月10日

问题

* 问题详情,请 查看题干

NO.PZ202208220100000508

问题如下:

Based on the output for Logistic Regression 1 in the table below, which of the following alternatives is closest to the probability that any ETF will be a winning fund?


选项:

A.

6.75%

B.

5.96%

C.

5.67%

解释:

C is correct. We calculate the probability that an that an ETF will be a winning fund by using the variable estimates and the average values of the independent variables. Using the equation for the probability, where we have seven independent variables,


Using the mean values and coefffcient estimates of the independent variables, the probability of the average ETF being a winner is


This implies that for an ETF with the average values of the independent variables, there is a 5.67% probability that it will be a winning ETF.

请问这个公式哪里有讲过?

exp在公式里是什么意思?

1 个答案

品职助教_七七 · 2024年03月10日

嗨,从没放弃的小努力你好:


exp就是e的多少次方。如exp(a)就是e的a次方,e^a的意思。

公式如下:

----------------------------------------------
加油吧,让我们一起遇见更好的自己!

  • 1

    回答
  • 1

    关注
  • 491

    浏览
相关问题

NO.PZ202208220100000508 问题如下 Baseon the output for Logistic Regression 1 in the table below, whiof the following alternatives is closest to the probability thany ETF will a winning fun A.6.75% B.5.96% C.5.67% C is correct. We calculate the probability ththETF will a winningfunusing the variable estimates anthe average values of the inpenntvariables.Using the equation for the probability, where we have seven inpenntvariables,Using the mevalues ancoefffcient estimates of the inpennt variables, the probability of the average ETF being a winner isThis implies thfor ETF with the average values of the inpennt variables, there is a 5.67% probability thit will a winning ETF. 我看前面有的题说了5%的significanlevel,就还得先看看哪个变量是significant的。这题没说所以不用看,直接代入就可以是吗?

2024-07-14 16:02 1 · 回答

NO.PZ202208220100000508 问题如下 Baseon the output for Logistic Regression 1 in the table below, whiof the following alternatives is closest to the probability thany ETF will a winning fun A.6.75% B.5.96% C.5.67% C is correct. We calculate the probability ththETF will a winningfunusing the variable estimates anthe average values of the inpenntvariables.Using the equation for the probability, where we have seven inpenntvariables,Using the mevalues ancoefffcient estimates of the inpennt variables, the probability of the average ETF being a winner isThis implies thfor ETF with the average values of the inpennt variables, there is a 5.67% probability thit will a winning ETF. 老师好,没有看懂题目具体是在问什么,辛苦翻译。whiof the following alternatives is closest to the probability thany ETF will a winning fun另外,这个计算和margineffect是否有关?感谢解答。

2024-03-26 19:25 1 · 回答