NO.PZ2020011303000050
问题如下:
The distribution of the losses from a project over one year has a normal loss distribution with a mean of −10 and a standard deviation of 20. What is the one-year VaR when the confidence level is (a) 95%, (b) 99%, and (c) 99.9%?
解释:
(a) -10+1.645*20=22.9
(b) -10+2.33*20=36.6
(c) -10+3.09*20=51.8
一个项目的损失符合正态分布,mean=-10,σ=20,求1年的VaR当置信区间等于95%,99%,99.9%时。
95% VaR=-10+1.645*20=22.9
99% VaR=-10+2.33*20=36.6
99.9% VaR=-10+3.09*20=51.8
老师您好,这是您对其他学生的解答,有个疑问,那要按照您的解答,首先在课程视频里建议就不要把VaR的公式讲成是|均值-z*方差|,因为对于没有学过金融的学生来讲会误解。还有如果按照您的意思,那加绝对值还有什么意义?既然|均值+/-z*方差|我们只取正值,因为不加绝对值正值代表损失,负值代表收益,拿每次计算VaR我们都应该用|均值+/-z*方差|然后取正值。