开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

ww · 2024年02月04日

什么时候算VaR要算上price和ytm?

* 问题详情,请 查看题干

NO.PZ202112010200002202

问题如下:

What is the approximate VaR for the bond position at a 99% confidence interval (equal to 2.33 standard deviations) for one month (with 21 trading days) if daily yield volatility is 0.015% and returns are normally distributed?

选项:

A.

$1,234,105

B.

$2,468,210

C.

$5,413,133

解释:

A is correct. The expected change in yield based on a 99% confidence interval for the bond and a 0.015% yield volatility over 21 trading days equals 16 bps = (0.015% × 2.33 standard deviations × √21).

We can quantify the bond’s market value change by multiplying the familiar (–ModDur × ∆Yield) expression by bond price to get $1,234,105 = ($75 million × 1.040175 (–9.887 × .0016)).

啥时候开始算VaR要算上price和ytm?

VaR不是|μ-2.33×σ|×market value 吗

我算的是 0.015%×√21×2.33×73million 答案跟A相近才选的A,但是不理解为什么解析里面要多乘上的价格和收益率。

2 个答案

pzqa015 · 2024年02月05日

嗨,从没放弃的小努力你好:


如果是百分比0.015%这样表述的,就认为是σ(∆y/y)

----------------------------------------------
努力的时光都是限量版,加油!

pzqa015 · 2024年02月04日

嗨,爱思考的PZer你好:


本题让计算的是Bond Position的var,也就是一定概率下债券市值的最大损失。

根据△P=-P*md*△y,只有当△y取正且最大时,△P变动方向为负且最大,此时可以得到债券市值的最大损失。

所以,我们要先找到△y取正的最大值。

根据Var的公式,|μdaily-2.33σdaily|,这个公式得到是以μ为原点,向左、向右的最大值,向左得到的是最大亏损,向右得到的是最大收益。

如果已知y的μ和σ,-2.33σdaily得到就是△y取负的最大值,2.33σdaily得到的就是△y取正的最大值,需要注意的是,今年的考纲,协会勘误了,题目有个条件daily yield volatility=0.015%,过去协会认为它是y的sigma,也就是σ(y)=0.015%,但协会现在认为它是△y/y的sigma,也就是σ(△y/y)=0.015%,那么在计算yield的Var的时候,应该额外乘y的值2.85%。所以,要用2.85%*2.33*0.015%*21^(1/2),得到△y取正的最大值,进而根据△P=-P*md*△y来计算出bond position的最大损失。

 

这道题是原来原版书就有的题,但是后来协会对做法做了修正,以基础班讲义的为准。原来的做法就认为0.015%是y的波动率,但今年协会给改成0.015%是△y/y的波动率。额,如果是几个bps这样表述的,就认为是σ(y),如果是百分比0.015%这样表述的,就认为是σ(∆y/y),这种题考法很固定,一般就是改个volatility的数,不会太灵活,同学注意一下就好了。

----------------------------------------------
努力的时光都是限量版,加油!

  • 2

    回答
  • 2

    关注
  • 258

    浏览
相关问题

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 我记得学二级的时候我们计算99%的VaR用的是 μ - 2.33 σ, 本题计算中只用了2.33σ 去算,μ默认取0,这是什么原因?另外YTM这里为什么不用在计算中呢?谢谢老师~

2024-07-21 12:32 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 请问本题是做了修正吗?默认0.015% yielvolatility是针对y的,不是lta y/y 吗

2024-07-17 23:50 2 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 老师您好,我按照答案公式计算,得到的结果是$1,235,347。是不是协会把计算公式改了,答案没改?

2024-06-15 10:03 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 日度VaR,变成月度VaR,乘以根号21,是计算公式,没问题;日度VaR的计算公式里没有久期,所以,为什么要乘以久期?

2024-01-07 16:36 3 · 回答