开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

猫总 · 2024年01月31日

老师,这道题用C5,2*0.17^2*0.83^3计算的结果是一样的,是巧合吗?可以代替解析里的公式吗?谢谢!

NO.PZ2022062760000020

问题如下:

A portfolio manager holds five bonds in a portfolio and each bond has a 1-year default probability of 17%. The event of default for each of the bonds is independent.

What is the probability of exactly two bonds defaulting over the next year?

选项:

A.

1.9%

B.

5.7%

C.

16.5%

D.

32.5%

解释:

中文解析:

带公式计算:


P(K=2) 且 n = 5, p = 0.17.

Entering the variables into the equation, this simplifies to 10 x 0.17^2 x 0.83^3 = 0.1652.

Since the bond defaults are independent and identically distributed Bernoulli random variables, the Binomial distribution can be used to calculate the probability of exactly two bonds defaulting.

The correct formula to use is:


where n is the number of bonds in the portfolio, p is the probability of default of each individual bond, and K is the number of bond defaults over the next year. Thus, this question requires P(K=2) with n = 5 and p = 0.17.

Entering the variables into the equation, this simplifies to 10 x 0.17^2 x 0.83^3 = 0.1652.

老师,这道题用C5,2*0.17^2*0.83^3计算的结果是一样的,是巧合吗?可以代替解析里的公式吗?谢谢!

1 个答案

品职答疑小助手雍 · 2024年01月31日

同学你好,你说的式子就是解析里的公式,是完全一样的,C52等于10,后面的也是0.17的2次方和0.83的3次方。

  • 1

    回答
  • 0

    关注
  • 225

    浏览
相关问题