NO.PZ2023052301000046
问题如下:
Consider a bond that has three years remaining to maturity, a coupon of 4% paid semiannually, and a yield-to-maturity of 4.60%. Assuming it is 12 days into the first coupon period and a 30/360 basis, the bond’s annualized Macaulay duration is closest to:
选项:
A.1.8764 years.
2.8386 years.
2.8553 years.
解释:
B is correct.
第一笔现金流:
PVCF1 = PMT /【(1+I/Y)^(n- t/T)】= 4/ (1+4.6%)^(1-12/360)=3.829
P0= 100✖️[1+PMT coupon^( t/T) ] = 100✖️(1+4.6%)^(12/360)=100.15
t= n- t/T = 1- 12/360
W1= PVCF1 / P0 ✖️ t = 3.829 / 100.15 ✖️(1-12/360)=0.0369
第二笔现金流:
PVCF1 = PMT /【(1+I/Y)^(n- t/T)】= 4/ (1+4.6%)^(2-12/360)= 3.66
P0= 100✖️[1+ I/Y ^( t/T) ] = 100✖️(1+4.6%)^(12/360)=100.15
t= n- t/T = 2- 12/360 =1.966
W2= PVCF1 / P0 ✖️ t = 3.66 / 100.15 ✖️(2-12/360)=0.0718
第三笔现金流:
PVCF1 =(PMT +FV)/【(1+I/Y)^(n- t/T)】= (100+4)/(1+4.6%)^(3-12/360)= 91.01
P0= 100✖️[1+ I/Y ^( t/T) ] = 100✖️(1+4.6%)^(12/360)=100.15
t= n- t/T = 3- 12/360 =2.9667
W3= PVCF1 / P0 ✖️ t = 91.01 / 100.15 ✖️2.9667=2.69
0.0369+0.0718+ 2.69 = ?不对