开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Betty-Che · 2024年01月17日

portfolio的convexity是怎么算的

* 问题详情,请 查看题干

NO.PZ202112010200000102

问题如下:

The manager estimates that accelerated economic growth in Australia will increase the level of government yields-to-maturity by 50 bps.

Under this scenario, which of the three portfolios experiences the smallest decline in market value?

选项:

A.

Bullet portfolio

B.

Barbell portfolio

C.

Equally weighted portfolio

解释:

A is correct. The change in portfolio value due to a rise in Australian government rate levels may be calculated using Equation:

%∆PVFull ≈ -(ModDur × ΔYield) + [½ × Convexity × (ΔYield)2],where ModDur and Convexity reflect portfolio duration and convexity, respectively. Therefore, the bullet portfolio declines by 2.093%, or -2.093% = (-4.241 × 0.005) + [0.5 × 22.1 × (0.0052)],

followed by a drop of 2.343% for the equally weighted portfolio, or

-2.343% = (-4.779 × 0.005) + [0.5 × 37.4 × (0.0052)],

and a drop of 2.468% for the barbell portfolio, or

-2.468% = (-5.049 × 0.005) + [0.5 × 45.05 × (0.0052)].

如题,barbells和equal weighted的convexity是怎么算的,看答案好像是直接平均的,这样合理吗


2 个答案
已采纳答案

pzqa015 · 2024年01月18日

嗨,从没放弃的小努力你好:


不是简单平均,是加权平均的


----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

pzqa015 · 2024年01月18日

嗨,爱思考的PZer你好:



2Y的convexity是4.9,4.5年的convexity是22.1,9年的convexity是85.2.

barbell portfolio由2年和9年债,各50%组成。所以,barbell的convexity=(85.2+4.9)/2=45.05

equal weights由2年、4.5年和9年各1/3组成,所以equal weights的convexity=(4.9+22.1+85.2)/3=37.4

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

  • 2

    回答
  • 0

    关注
  • 220

    浏览
相关问题

NO.PZ202112010200000102 问题如下 The manager estimatesthaccelerateeconomic growth in Australia will increasethe levelofgovernment yiel-to-maturity 50 bps. Unr this scenario, whiof thethree portfolios experiences the smallest cline in market value? A.Bulletportfolio B.Barbell portfolio C.Equally weighteportfolio A is correct. Thechange in portfolio value e to a rise in Australigovernment rate levelsmcalculateusing Equation:%∆PVFull ≈ -(Mour ×ΔYiel + [½ × Convexity × (ΔYiel2],where Mour anonvexity refleportfolio ration anconvexity, respectively. Therefore,the bullet portfolio clines 2.093%, or -2.093% = (-4.241 × 0.005)+ [0.5 × 22.1 × (0.0052)],followea op of2.343% for the equally weighteportfolio, or -2.343% = (-4.779 ×0.005) + [0.5 × 37.4 × (0.0052)], ana op of 2.468%for the barbell portfolio, or -2.468% = (-5.049 ×0.005) + [0.5 × 45.05 × (0.0052)]. 这题答案还用公式算出了每个portfolio的prichange是多少. 我是直接看A的ration最小,就选了请问我的方法有什么问题么?谢谢。

2024-10-27 07:42 1 · 回答

NO.PZ202112010200000102 问题如下 A Syey-baseixeincome portfolio manager is consiring the following Commonwealthof Australia government bon traon the ASX (AustraliStoExchange): The manager isconsiring portfolio strategies baseupon various interest rate scenariosover the next 12 months. She is consiring three long-only governmentbonportfolioalternatives, follows:Bullet: Invest solely in 4.5-yegovernment bonBarbell: Invest equally in 2-yean9-yegovernment bonEquweights: Invest equally in 2-year, 4.5-year, an9-yebon The manager estimatesthaccelerateeconomic growth in Australia will increasethe levelofgovernment yiel-to-maturity 50 bps. Unr this scenario, whiof thethree portfolios experiences the smallest cline in market value? A.Bulletportfolio B.Barbell portfolio C.Equally weighteportfolio A is correct. Thechange in portfolio value e to a rise in Australigovernment rate levelsmcalculateusing Equation:%∆PVFull ≈ -(Mour ×ΔYiel + [½ × Convexity × (ΔYiel2],where Mour anonvexity refleportfolio ration anconvexity, respectively. Therefore,the bullet portfolio clines 2.093%, or -2.093% = (-4.241 × 0.005)+ [0.5 × 22.1 × (0.0052)],followea op of2.343% for the equally weighteportfolio, or -2.343% = (-4.779 ×0.005) + [0.5 × 37.4 × (0.0052)], ana op of 2.468%for the barbell portfolio, or -2.468% = (-5.049 ×0.005) + [0.5 × 45.05 × (0.0052)]. 我想问一下,从定性的角度,barbell的convexity是大于bullet 和laler portfoilo。所以interest rate 下降 50%,我们应该选择convexity最大的 barbell 组合才对,为什么计算出来的答案是bullet?什么和定量的理解矛盾?

2024-07-09 14:46 1 · 回答

NO.PZ202112010200000102 问题如下 The manager estimatesthaccelerateeconomic growth in Australia will increasethe levelofgovernment yiel-to-maturity 50 bps. Unr this scenario, whiof thethree portfolios experiences the smallest cline in market value? A.Bulletportfolio B.Barbell portfolio C.Equally weighteportfolio A is correct. Thechange in portfolio value e to a rise in Australigovernment rate levelsmcalculateusing Equation:%∆PVFull ≈ -(Mour ×ΔYiel + [½ × Convexity × (ΔYiel2],where Mour anonvexity refleportfolio ration anconvexity, respectively. Therefore,the bullet portfolio clines 2.093%, or -2.093% = (-4.241 × 0.005)+ [0.5 × 22.1 × (0.0052)],followea op of2.343% for the equally weighteportfolio, or -2.343% = (-4.779 ×0.005) + [0.5 × 37.4 × (0.0052)], ana op of 2.468%for the barbell portfolio, or -2.468% = (-5.049 ×0.005) + [0.5 × 45.05 × (0.0052)]. 请问这种equally weighteconvexity和M以直接加权平均吗?获得新的组合MConV. ,能一下原理吗?谢谢

2024-05-04 15:08 1 · 回答

NO.PZ202112010200000102 问题如下 A Syey-baseixeincome portfolio manager is consiring the following Commonwealthof Australia government bon traon the ASX (AustraliStoExchange): The manager isconsiring portfolio strategies baseupon various interest rate scenariosover the next 12 months. She is consiring three long-only governmentbonportfolioalternatives, follows:Bullet: Invest solely in 4.5-yegovernment bonBarbell: Invest equally in 2-yean9-yegovernment bonEquweights: Invest equally in 2-year, 4.5-year, an9-yebon The manager estimatesthaccelerateeconomic growth in Australia will increasethe levelofgovernment yiel-to-maturity 50 bps. Unr this scenario, whiof thethree portfolios experiences the smallest cline in market value? A.Bulletportfolio B.Barbell portfolio C.Equally weighteportfolio A is correct. Thechange in portfolio value e to a rise in Australigovernment rate levelsmcalculateusing Equation:%∆PVFull ≈ -(Mour ×ΔYiel + [½ × Convexity × (ΔYiel2],where Mour anonvexity refleportfolio ration anconvexity, respectively. Therefore,the bullet portfolio clines 2.093%, or -2.093% = (-4.241 × 0.005)+ [0.5 × 22.1 × (0.0052)],followea op of2.343% for the equally weighteportfolio, or -2.343% = (-4.779 ×0.005) + [0.5 × 37.4 × (0.0052)], ana op of 2.468%for the barbell portfolio, or -2.468% = (-5.049 ×0.005) + [0.5 × 45.05 × (0.0052)]. 老师好,想问下,这道题的答案中,是通过公式计算得出各个portfolio的变动后,再得到的答案。我在回答这个题的时候,是通过判断哪个portfolio的ration最低判断出的bullet portfolio,答案也是正确的。这样的思路是不是适合选择题?如果是主观题,是不是还得老老实实的按公式计算?

2024-02-14 11:10 1 · 回答