开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

考拉 · 2023年12月23日

怎么这么拗口,英文答案不是很理解,中文翻译过来也很奇怪啊

NO.PZ2022122601000037

问题如下:

Bader begins by analyzing portfolio risk. She decides to forecast a variance–covariance matrix (VCV) for 20 asset classes, using 10 years of monthly returns and incorporating both the sample statistics and the factor-model methods. To mitigate the impact of estimation error, Bader is considering combining the results of the two methods in an alternative target VCV matrix, using shrinkage estimation.

Bader asks her research assistant to comment on the two approaches and the benefits of applying shrinkage estimation. The assistant makes the following statements:

Statement 1

Shrinkage estimation of VCV matrices will decrease the efficiency of the estimates versus the sample VCV matrix.

Statement 2

Your proposed approach for estimating the VCV matrix will not be reliable because a sample VCV matrix is biased and inconsistent.

Statement 3

A factor-based VCV matrix approach may result in some portfolios that erroneously appear to be riskless if any asset returns can be completely determined by the common factors or some of the factors are redundant.

Which of the following statements made by Bader’s research assistant is correct?

选项:

A.

Statement 1

B.

Statement 2

C.

Statement 3

解释:

Correct Answer: C

Statement 3 is correct. As long as none of the factors used in a factor-based VCV model are redundant and none of the asset returns are completely determined by the common factors, there will not be any portfolios that erroneously appear to be riskless. Therefore, a factor-based VCV matrix approach may result in some portfolios that erroneously appear to be riskless if any asset returns can be completely determined by the common factors or some of the factors are redundant.

A is incorrect because shrinkage estimation of VCV matrices will increase the efficiency of the estimates versus the sample VCV matrix, because its mean squared error (MSE) will in general be smaller than the MSE of the (unbiased) sample VCV matrix. Efficiency in this context means a smaller MSE.

B is incorrect because, although the proposed approach is not reliable, the reason is not that the sample VCV matrix is biased and inconsistent; on the contrary, it is unbiased and consistent. Rather, the estimate of the VCV matrix is not reliable because the number of observations is not at least 10 times the number of assets (i.e., with 10 years of monthly return data, there are only 120 observations, but the rule of thumb suggests there should be at least 200 observations for 20 asset classes).

中文解析:

表述3是正确的。只要在基于因素的VCV模型中使用的因素没有一个是多余的,没有一个资产回报完全由共同因素决定,就不会有任何投资组合错误地看起来是无风险的。因此,如果任何资产收益完全由共同因素决定,或者某些因素是冗余的,那么基于因素的VCV矩阵方法可能会导致一些投资组合错误地看起来是无风险的。

A是不正确的,因为相对于样本VCV矩阵,VCV矩阵的收缩估计会增加估计的效率,因为它的均方误差(MSE)通常会小于(无偏)样本VCV矩阵的MSE。在这种情况下,效率意味着较小的MSE。

B是不正确的,因为虽然提出的方法不可靠,但原因不是样本VCV矩阵有偏差和不一致;相反,它是公正和一致的。相反,VCV矩阵的估计是不可靠的,因为观测值的数量至少不是资产数量的10倍(即,对于10年的月度回报数据,只有120个观测值,但经验法则表明,20个资产类别至少应该有200个观测值)。

怎么这么拗口,英文答案不是很理解,中文翻译过来也很奇怪啊,老师能否用通俗易懂的话讲解一下

1 个答案

源_品职助教 · 2023年12月23日

嗨,从没放弃的小努力你好:


只要基于因素的风险现值模型中使用的所有因素都不是多余的,而且没有任何资产回报完全由共同因素决定,

那么投资组合就不会被错误地认为是无风险的。这是咱们讲义P201第一段的原话。现在等于把这个结论倒过来说了一下。

由此可以推演出,如果任何资产收益完全由公共因子决定,或某些因子是多余的。

那么基于因子的VCV矩阵方法可能导致某些投资组合错误地被认为是无风险的。



A是错误的,因为相对于样本VCV矩阵,收缩估计VCV矩阵会增加估计的效率,

因为其均方误差(MSE)一般会小于(无偏)样本VCV矩阵的MSE。这反映了咱们讲义P206的观点。



B是错误的,样本VCV矩阵是无偏的和一致的。而,VCV矩阵的估计则是不可靠的,

因为观测的数量不满足至少10倍于资产数目的要求。


----------------------------------------------
加油吧,让我们一起遇见更好的自己!

  • 1

    回答
  • 1

    关注
  • 312

    浏览
相关问题

NO.PZ2022122601000037 问题如下 Bar begins analyzing portfolio risk. She cis to forecast avariance–covarianmatrix (VCV) for 20 asset classes, using 10 years ofmonthly returns anincorporating both the sample statistianthefactor-mol metho. To mitigate the impaof estimation error, Bar isconsiring combining the results of the two metho in alternative targetVmatrix, using shrinkage estimation.Bar asks herresearassistant to comment on the two approaches anthe benefits ofapplying shrinkage estimation. The assistant makes the following statements:Statement 1 Shrinkageestimation of Vmatrices will crease the efficienof the estimates versusthe sample Vmatrix.Statement 2 Your proposeapproachfor estimating the Vmatrix will not reliable because a sample Vmatrixis biaseaninconsistent.Statement 3 A factor-baseVCVmatrix approamresult in some portfolios therroneously appeto beriskless if any asset returns ccompletely terminethe commonfactors or some of the factors are rennt.Whiof thefollowing statements ma Bar’s researassistant is correct? A.Statement 1 B.Statement 2 C.Statement 3 CorreAnswer: C Statement 3 is correct.long none of the factors usein a factor-baseVmol are renntannone of the asset returns are completely terminethe common factors,there will not any portfolios therroneously appeto riskless.Therefore, a factor-baseVmatrix approamresult in some portfoliostherroneously appeto riskless if any asset returns ccompletelyterminethe common factors or some of the factors are rennt.A is incorrectbecause shrinkage estimation of Vmatrices will increase the efficienofthe estimates versus the sample Vmatrix, because its mesquareerror(MSE) will in genersmaller ththe MSE of the (unbiase sample VCVmatrix. Efficienin this context means a smaller MSE.B is incorrectbecause, although the proposeapproais not reliable, the reason is not thatthe sample Vmatrix is biaseaninconsistent; on the contrary, it isunbiaseanconsistent. Rather, the estimate of the Vmatrix is not reliablebecause the number of observations is not least 10 times the number ofassets (i.e., with 10 years of monthly return tthere are only 120observations, but the rule of thumb suggests there shoulleast 200observations for 20 asset classes).中文解析表述3是正确的。只要在基于因素的VCV模型中使用的因素没有一个是多余的,没有一个资产回报完全由共同因素决定,就不会有任何投资组合错误地看起来是无风险的。因此,如果任何资产收益完全由共同因素决定,或者某些因素是冗余的,那么基于因素的VCV矩阵方法可能会导致一些投资组合错误地看起来是无风险的。A是不正确的,因为相对于样本VCV矩阵,VCV矩阵的收缩估计会增加估计的效率,因为它的均方误差(MSE)通常会小于(无偏)样本VCV矩阵的MSE。在这种情况下,效率意味着较小的MSE。B是不正确的,因为虽然提出的方法不可靠,但原因不是样本VCV矩阵有偏差和不一致;相反,它是公正和一致的。相反,VCV矩阵的估计是不可靠的,因为观测值的数量至少不是资产数量的10倍(即,对于10年的月度回报数据,只有120个观测值,但经验法则表明,20个资产类别至少应该有200个观测值)。 If the number of assets excee the number of historicobservations, then some portfolios will erroneously appeto riskless. 这句话不是sample statistics的缺点吗?Statement 3说的是multi-factor approach,本身就可以haning large amount of assets, 也适用这个描述吗?

2024-06-09 16:56 2 · 回答