NO.PZ2018122701000033
问题如下:
Basel II requires a backtest of a bank’s internal value at risk (VaR) model (IMA). Assume the bank’s ten-day 99% VaR is $1 million (minimum of 99% is hard-wired per Basel). The null hypothesis is: the VaR model is accurate. Out of 1,000 observations, 25 exceptions are observed (we saw the actual loss exceed the VaR 25 out of 1000 observations). (Binomial CDF)
选项:
A.We will probably call the VaR model good (accurate) but we risk a Type I error.
B.We will probably call the VaR model good (accurate) but we risk a Type II error.
C.We will probably call the model bad (inaccurate) but we risk a Type I error.
D.We will probably call the model bad (inaccurate) but we risk a Type II error.
解释:
C is correct.
考点
:
Backtesting VaR
解析 :H0 : the VaR model is accurate. Hα: the VaR model is inaccurate.
As 4.77 is larger than 2.58, we reject the null hypothesis. Therefore, the model is bad model, and this implies a risk of type I error.
大概能懂题意,我们对银行的一个模型进行backtesing, 然后银行的模型给的VaR是99%,而我们实际测出来的是1000次25个exception。所以我们的结论是这个模型不准,但是因为原假设H0是模型是准确的,而我们的结果拒绝了原假设,所以我们犯了一类错误?
有点懵了,那我们既然犯错误了,那对于这个model不准确的结论成立吗?或者说这个犯一类错误的意义是啥,有点没懂。不知道表达清楚没有。