NO.PZ2016031001000112
问题如下:
An investor purchases a nine-year, 7% annual coupon payment bond at a price equal to par value. After the bond is purchased and before the first coupon is received, interest rates increase to 8%. The investor sells the bond after five years. Assume that interest rates remain unchanged at 8% over the five-year holding period.
Assuming that all coupons are reinvested over the holding period, the investor’s five-year horizon yield is closest to:
选项:
A.5.66%.
B.6.62%.
C.7.12%.
解释:
B is correct.
The investor’s five-year horizon yield is closest to 6.62%. After five years, the sale price of the bond is 96.69 and the future value of reinvested cash flows at 8% is 41.0662 per 100 of par value. The total return is 137.76 (= 41.07 + 96.69), resulting in a realized five-year horizon yield of 6.62%:
r = 0.0662
41.0662=7 + 7*1.08 + 7*1.08^2 + 7*1.08^3 + 7*1.08^4
96.6879=7/1.08 + 7/1.08^2 + 7/1.08^3 + 107/1.08^4
考点:Horizon Yield
解析:由题干可知,一个九年期的债券持有五年。现在要我们计算五年的Horizon Yield。
首先求出5年后卖出债券时所有的Coupon + Coupon Reinvestment,将现金流复利到第五年末,得到41.07。然后求出5年后卖出时的债券价格,要算5年后卖出债券的价格,实际上是将债券剩余4年的现金流折现到第五年末。于是,N=4,PMT=7,I/Y=8,FV=100,得到 PV = -96.69,所以5年后债券的卖出价格是96.69。
将以上两个部分相加总:得到持有期总收益为137.76。
计算年化收益率:100*(1+r)^5=137.76,求出r = 6.62%,故选项B正确。
阔以解释一下为什么N=4而不是5呢?是跟第一次付息前,利率变化有关么,这个变化是怎么影响的N取值的呀?谢谢老师