开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

坏呼呼嘿嘿 · 2023年08月02日

这题麻烦给讲一下,怎么做的

* 问题详情,请 查看题干

NO.PZ202303270300007102

问题如下:

(2) What is the approximate VaR for the bond position at a 99% confidence interval (equal to 2.33 standard deviations) for one month (with 21 trading days) if daily yield volatility is 1.50 bps and returns are normally distributed?

选项:

A.

$1,234,105

B.

$2,468,210

C.

$5,413,133

解释:

A is correct. The expected change in yield based on a 99% confidence interval for the bond and a 1.50 bps yield volatility over 21 trading days equals 16 bps = (1.50 bps × 2.33 standard deviations × 211/2). We can quantify the bond’s market value change by multiplying the familiar (–ModDur × △Yield) expression by bond price to get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)).

这题麻烦给讲一下,怎么做的

2 个答案

pzqa31 · 2023年08月17日

嗨,努力学习的PZer你好:


是的。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

pzqa31 · 2023年08月03日

嗨,从没放弃的小努力你好:


这道题是这样,他让我们计算在一个月里,99% confidence interval下,债券价格的VaR。

也就是说,我们需要计算:在一个月里,在99%的概率下,债券的最大损失;或者按照VAR的另外一个角度理解就是:在一个月里,在1%概率下,债券的最小损失。


实际上就是要算,在一个月里面,在1%的概率下,债券的价格最少会下跌多少金额。而要计算债券价格下跌多少金额,我们可以用Duration乘以债券yield的变动,所以引出公式:

下跌Price多少金额 = - duration × Yield%变动幅度 × market value。


在上面公式里面,债券的Duration与market value是题干已知信息,所以要计算Price最少下跌多少金额,现在就转化成了计算Yield%最少上升多少幅度,求出了Yield%最少上升多少幅度,我们就可以计算出Price最少下跌多少金额。所以我们现在要计算在一个月里面,在1%的概率下,Yield%最少会上升多少幅度。题干刚好给的是Yield%的相关信息,所以现在我们可以套用题干yield%的信息来计算了。


题干已知每日的Yield波动率是1.50%,一个月有21个交易日,所以根据平方根法则,Yield%的月波动率是:1.50% × 根号21

所以在1%的概率下,一个月里,Yield%的最小上升幅度为:1.50% × 根号21 × 2.33


于是:

最少下跌金额 = - duration × 1.50% × 根号21 × 2.33 × market value;

带入相关数据即可。


最终算出来的金额是:1,234,105,所以可知,该债券在一个月里面,在99%的概率下,价格下跌的最大幅度是1,234,105(或者理解成,在1个月里面,在1%的概率下,该债券价格下跌的最小金额是1,234,105)。


这道题能代表一类题型,所以练好了这一道基本可以掌握该考点。


ps:这道题是原版书的课后题,原题有点问题。如果要得到正确的答案,需要将题干里daily yield volatility 1.50%改成0.015%,剩下答案里的计算方法是正确的。

----------------------------------------------
努力的时光都是限量版,加油!

willhunting · 2023年08月16日

算出来应该是1,235,347.204, 选项A应该是近似结果

  • 2

    回答
  • 2

    关注
  • 587

    浏览
相关问题

NO.PZ202303270300007102 问题如下 (2) Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 1.50 bps yielvolatility over 21 trang ys equals 16 bps = (1.50 bps × 2.33 stanrviations × 211/2). We cquantify the bons market value change multiplying the famili(–Mour × △Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 老师,我按照基础班讲义“P335-336”的例题做的,按照讲义的做法,当给出的是0.8bps,是利率变动波动率即σ(△y/y),所以需要转换成利率波动率,即σ(△y)=y×σ(△y/y)=4%×0.8%,再进行计算。若按照基础班讲义做,此题已知的是bps,应该也是利率变动波动率吧?则σ(△y)=2.85%×1.5%=0.0428%VaR=2.33×0.0428%×21^½=0.4569%VaR=(-9.887)×0.4569%×(75,000,000×104.0175/100) = -3,524,141.74答案没有该,是我哪一块理解错了,还是答案有问题呢?

2024-08-06 01:00 1 · 回答

NO.PZ202303270300007102 问题如下 (2) Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 1.50 bps yielvolatility over 21 trang ys equals 16 bps = (1.50 bps × 2.33 stanrviations × 211/2). We cquantify the bons market value change multiplying the famili(–Mour × △Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 讲义里公式是change in bonposition=-ration*change in YTM*MktValue, 这里(–9.887 × .0016)就已经算出新加入portfolio的价格变动率了,直接乘以market value不行吗, 还是说change in bonposition这个公式算的也是percentage change in bonprice?

2024-08-03 01:17 1 · 回答

NO.PZ202303270300007102 问题如下 (2) Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 1.50 bps yielvolatility over 21 trang ys equals 16 bps = (1.50 bps × 2.33 stanrviations × 211/2). We cquantify the bons market value change multiplying the famili(–Mour × △Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 即99% confininterv(equto 2.33 stanrviations) 这些

2024-07-12 13:46 1 · 回答

NO.PZ202303270300007102 问题如下 (2) Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 1.50 bps yielvolatility over 21 trang ys equals 16 bps = (1.50 bps × 2.33 stanrviations × 211/2). We cquantify the bons market value change multiplying the famili(–Mour × △Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 'the expectechange in yielbaseon a 99% confinintervfor the bonana 1.50 bps yielvolatility over 21 trang ys equals 16 bps = (1.50 bps × 2.33 stanrviations × 211/2).'老师可以列一下公式吗? 公式不是 me+/- k* s吗?

2024-06-30 12:47 1 · 回答