NO.PZ2016062402000020
问题如下:
Consider the following linear regression model: Y=a+bX+e. Suppose a=0.05, b=1.2, SD(Y) = 0.26, and SD(e) = 0.1. What is the correlation between X and Y?
选项:
A.0.923
B.0.852
C.0.701
D.0.462
解释:
We can find the volatility of X from the variance decomposition, Equation: . This gives . Then SD(X) = 0.2, and .
我试着自己推了一下,不知道是不是可以把这个当成一个结论。
Y = a + bX + ε, 因此V(Y) = (bX)^2 + V(ε), 带入得 0.26^2 = 1.2^2 * V(X) +0.1^2, 得到V(X)=0.04。
Cov(X,Y)= E[(X-E(X)]*E[(Y-E(Y))], 把= a + bX + ε 代入,得
Cov (X,Y)= E[(X-E(X)] *E(a+bX+ε - a-b*E(X)) = E[(X-E(X)] * b* E(X-E(X)) = b*E(X-E(X))^2 = b*V(X)
所以我们得到Cov(X,Y) = b*V(X) 这个等式,代入讲义中ρ的公式两边取平方,ρ^2 = b^2 * V(X)/V(Y) = 1.2^2 * 0.04 / 0.26^2, 因此ρ = 0.923