开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

13995173783 · 2023年06月13日

mormalized怎么实现的

NO.PZ2020010304000016

问题如下:

Suppose that the annual profit of two firms, one an incumbent (Big Firm, X1) and the other a startup (Small Firm, X2), can be described with the following probability matrix:

What are the conditional expected profit and conditional standard deviation of the profit of Big Firm when Small Firm either has no profit or loses money (X2 0)?

选项:

A.

3.01; 30.52

B.

3.01; 931

C.

1.03; 30.52

D.

1.03; 931.25

解释:

We need to compute the conditional distribution given X2 ≤ 0. The relevant rows of the probability matrix are

The conditional distribution can be constructed by summing across rows and then normalizing to sum to unity. The non-normalized sum and the normalized version are

Finally, the conditional expectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = USD 3.01M.

The conditional expectation squared is E[X1^2|X2 ≤0]=940.31, and so

the conditional variance is V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25

and the conditional standard deviation is USD 30.52M.

请老师解答一下,NONMORMALIZED(是什么意思?)怎么计算mormalized数据,谢谢!

1 个答案

pzqa27 · 2023年06月14日

嗨,从没放弃的小努力你好:


同学你好,先把小于等于0的概率相加,得到第二个表的左半边,因为问的就是小公司亏钱或者不赚钱的条件概率,第二张图第一列那个non-normalized其实就是常规的概率,拿前两行举例5.87%和27.43%分别是1.97%+3.9%和3.93%+23.5%的结果。


然后normalize其实就是求条件概率,也就是把这4个数等比例扩充到总概率等于100%就行了,假设一个扩大系数X,(5.87%+27.43%+13.5%+3.09%)*X=100%,求出来X,然后把这4个数分别乘以X就得到右边那列normalized数据了。

----------------------------------------------
努力的时光都是限量版,加油!

13995173783 · 2023年06月14日

谢谢老师

  • 1

    回答
  • 1

    关注
  • 283

    浏览
相关问题

NO.PZ2020010304000016 问题如下 Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)? A.3.01; 30.52 B.3.01; 931 C.1.03; 30.52 1.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. 如题,我这样计算出的答案S30.43

2024-03-11 17:13 1 · 回答

NO.PZ2020010304000016 问题如下 Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)? A.3.01; 30.52 B.3.01; 931 C.1.03; 30.52 1.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. normalize好像讲义里都没提到

2024-03-03 17:25 2 · 回答

NO.PZ2020010304000016问题如下Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)?A.3.01; 30.52B.3.01; 931C.1.03; 30.521.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M根据公式算出来的是1.5050,是哪里有问题吗?

2024-02-18 23:50 2 · 回答

NO.PZ2020010304000016问题如下Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)?A.3.01; 30.52B.3.01; 931C.1.03; 30.521.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M.讲义sli 71关于contionexpectation的例题中,storeturn 三个概率加起来也是不到100。但是最后解contionexpectation时也是直接用题目中的概率。请问为什么这道题要Normalize?没搞懂,可以一下吗?

2024-01-17 13:14 1 · 回答

NO.PZ2020010304000016 问题如下 Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)? A.3.01; 30.52 B.3.01; 931 C.1.03; 30.52 1.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. 本题考点为条件期望和条件标准差,涉及期望、标准差计算公式以及条件概率性质。计算步骤如下1、条件期望为 E[X1|X2 ≤0]= Σx1Pr(X1 = x1|X2 ≤0)= Σx1*[Pr(X1 = x1,X2 ≤0)/Pr(X2 ≤0)],依次带入X1取4个概率的数值计算。2、条件标准差为E[X1^2|X2 ≤0]- E[X1|X2 ≤0]^2,其中E[X1^2|X2 ≤0]=Σx1^2*Pr(X1 = x1|X2 ≤0)=Σx1^2*[Pr(X1 = x1,X2 ≤0)/Pr(X2 ≤0)];E[X1|X2 ≤0]^2为计算1的结果。想知道以上思路和计算过程是否正确;整个计算比较繁琐,容易出错,是否有更高效的计算方法?

2024-01-07 16:05 2 · 回答