NO.PZ2019011002000003
问题如下:
Tim, a credit analyst, is valuing bond C. Bond C is rated at AA. Bond C is a 5-year corporate bond with a par value of $1000. The bond has a fixed annual coupon rate of 6%, and the coupon is paid annually.
Tim believes that the risk-neutral probability of default (Hazard rate) for each date for the bond is 1.50%, and the recovery rate is 25%. Assume there is no interest rate volatility and the government bond yield curve is flat at 2%.
The market price of Bond C is $1087. If the bond is purchased at this price, and there is a default on Date 4, the rate of return to the bond buyer is closest to:
选项:
A.-15%
B.-46%
C.-23%
解释:
C is correct.
考点:计算违约情况下债券的Return
解析:
该5年期债券,在第四年违约,计算投资者收益率可以通过计算IRR得到。
由于在第四年违约,第四年的现金流为第四年的Recovery value;
计算第四期的Recovery value,需要计算出第四期的Exposure,计算步骤和上题一致;有了第四期的Exposure乘以Recovery rate之后,可以得到本期的Recovery value。本题数据和上题一致,可从上题表格知,计算出来的Recovery value为:274.805
该债券在第四期违约,前三期的Coupon仍然可以拿到,因此IRR为:
1.考点梳理:已知FV,求由于credit risk带来的return?
2.If default occurs on the date 4, anuual rate of return计算公式如下:
FV=coupon/(1+IRR)+coupon/(1+IRR)^2+coupon/(1+IRR)^3+Revorery Amount/(1+IRR)^4 (*)
(1)等式右边计算没有问题;
(2)等式左边不是应该是FV吗,题干所给1087应该是MV≠FV
我的问题在于,根据基础讲义P359,等式左边应该是基于FV=VND-∑PV(EL)算出FV再代入(*)等式左边
根据FV计算公式,代入数字算得FV应该是1,129.8625,而非1087,为何题目直接采用MV代入(*)等式左边计算?