NO.PZ2018062006000115
问题如下:
An annual coupon bond with a yield-to-maturity of 7% is priced at 94.75 per 100 of par value, and the coupon rate is 5%. The remaining time-to-maturity is 3 years. The Macaulay duration of this bond is:
选项:
A.2.73.
B.2.81.
C.2.86.
解释:
C is correct.
According to definition, Macaulay duration is a weighted average of the time to the receipt of cash flow, the weights are the shares of the full price corresponding to each coupon and principal payment.
The Macaulay duration of this bond is 2.86.
考点:Macaulay duration
解析:Macaculay久期就是平均还款期,权重就是现金流现值占总价格的比值。
1、第二列CF就是每一期的现金流,分别是5、5和105;
2、用折现率 7% 进行折现到零时刻,就可以得到各期的PV,分别是5/1.07=4.67; 5/(1.07)2 = 4.37; 105/(1.07)3 = 85.711。将这三个数据加总就是94.75(第三列);
3、权重就是每一个PV占94.75的比例,分别是4.67/94.75=0.049;4.37/94.75=0.046; 85.711/94.75=0.9046
4、最后一列就是第一列period和第四列权重相乘,最终得到Mac D就是2.86,故选项C正确。
这道题的解题思路我一点没懂。。
把每一期的cf折现到0时刻用计算器怎么按啊?
然后最后加总起来不就是题目中给出的pv吗,为什么还要挨个算一遍啊?
还有不是要乘以一个时间的嘛?第一年乘以1 第二年乘以2 这样