开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

dauphinois16 · 2023年03月25日

计算

* 问题详情,请 查看题干

NO.PZ202112010200002202

问题如下:

What is the approximate VaR for the bond position at a 99% confidence interval (equal to 2.33 standard deviations) for one month (with 21 trading days) if daily yield volatility is 0.015% and returns are normally distributed?

选项:

A.

$1,234,105

B.

$2,468,210

C.

$5,413,133

解释:

A is correct. The expected change in yield based on a 99% confidence interval for the bond and a 0.015% yield volatility over 21 trading days equals 16 bps = (0.015% × 2.33 standard deviations × √21).

We can quantify the bond’s market value change by multiplying the familiar (–ModDur × ∆Yield) expression by bond price to get $1,234,105 = ($75 million × 1.040175 (–9.887 × .0016)).

课上不是说Daily yield volatility是deltaY/Y 的volatility吗?要再乘一个ytm计算deltaY 的volatility 。这题目描述不是和课上例题一样么,怎么是不同的做法?或是我理解的不对

1 个答案

pzqa015 · 2023年03月25日

嗨,努力学习的PZer你好:


这道题错了哈,以基础班讲的为准。

这道题是去年原版书就有的题,但是今年协会对做法做了修正,以基础班讲义的为准。原来的做法就认为0.015%是y的波动率,也就是答案解析的那样。但今年协会给改成0.015%是△y/y的波动率,也就是最新基础班讲义的做法。额,如果是几个bps这样表述的,就认为是σ(y),如果是百分比0.015%这样表述的,就认为是σ(∆y/y)。

----------------------------------------------
加油吧,让我们一起遇见更好的自己!

  • 1

    回答
  • 1

    关注
  • 400

    浏览
相关问题

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 我记得学二级的时候我们计算99%的VaR用的是 μ - 2.33 σ, 本题计算中只用了2.33σ 去算,μ默认取0,这是什么原因?另外YTM这里为什么不用在计算中呢?谢谢老师~

2024-07-21 12:32 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 请问本题是做了修正吗?默认0.015% yielvolatility是针对y的,不是lta y/y 吗

2024-07-17 23:50 2 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 老师您好,我按照答案公式计算,得到的结果是$1,235,347。是不是协会把计算公式改了,答案没改?

2024-06-15 10:03 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 啥时候开始算VaR要算上price和ytm?VaR不是|μ-2.33×σ|×market value 吗我算的是 0.015%×√21×2.33×73million 答案跟A相近才选的A,但是不理解为什么解析里面要多乘上的价格和收益率。

2024-02-04 16:24 2 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 日度VaR,变成月度VaR,乘以根号21,是计算公式,没问题;日度VaR的计算公式里没有久期,所以,为什么要乘以久期?

2024-01-07 16:36 3 · 回答