开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

关 小乐。 · 2023年03月14日

FVN/PV = (¥1,000,000/¥250,000)是什么意思呀

NO.PZ2017092702000006

问题如下:

For a lump sum investment of ¥250,000 invested at a stated annual rate of 3% compounded daily, the number of months needed to grow the sum to ¥1,000,000 is closest to:

选项:

A.

555.

B.

563.

C.

576.

解释:

A is correct.

The effective annual rate (EAR) is calculated as follows:

EAR = (1 + Periodic interest rate)m – 1   EAR = (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%.

Solving for N on a financial calculator results in (where FV is future value and PV is present value):

(1 + 0,030453N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, which multiplied by 12 to convert to months results in 554.5, or ≈ 555 months.

为什么用 FVN/PV


1 个答案

星星_品职助教 · 2023年03月14日

同学你好,

这个步骤是基于公式:FV=PV*(1+r)^n,所以FV/PV=(1+r)^n。即:

然后代入FV=1,000,000,PV=250,000。

其中FVN中的N没有实际作用,不写也行。

--------

但这道题并不是用公式解出来的。计算N的题目统一都用计算器第三排五个键来CPT N。本题可以在转化为EAR得到3.0453%后,按计算器:PV=-250000, I/Y=3.045,PMT=0,FV=1000000, CPT N=46.21(年),然后乘以12得到554.5月

  • 1

    回答
  • 0

    关注
  • 476

    浏览
相关问题

NO.PZ2017092702000006 问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563. C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 这题我EAR已经算出来是3.045,带入计算器知四求一不知道为什么算出来是46.21.

2023-06-02 16:31 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 不能用上面这个去试,是因为不能默认每个月30天么?谢谢

2023-05-28 15:18 1 · 回答

NO.PZ2017092702000006问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563.C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. 我直接就是计算器计算的 I/Y是3÷365 pmt=0 然后分别代入pv和fv最后求出是16867再除以三十天 是562.24

2022-11-22 02:27 3 · 回答

NO.PZ2017092702000006 问题如下 For a lump sum investment of ¥250,000 investea stateannurate of 3% compounily, the number of months neeto grow the sum to ¥1,000,000 is closest to: A.555. B.563. C.576. A is correct. The effective annurate (EAR) is calculatefollows: E= (1 + Perioc interest rate)m – 1   E= (1 + 0.03/365)365 – 1   EAR= (1.03045) – 1 = 0.030453 ≈ 3.0453%. Solving for N on a financicalculator results in (where FV is future value anPV is present value): (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months. (1 + 0,030453)N = FVN/PV = (¥1,000,000/¥250,000)So,N = 46.21 years, whimultiplie12 to convert to months results in 554.5, or ≈ 555 months.请问这一步是什么意思,是怎么求得的46.21呢。我算到日利率为0.030453就不知道怎么往下算了

2022-11-11 06:02 3 · 回答