开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

小螃蟹 · 2023年03月13日

题干不是很明白,老师能翻译一下吗

NO.PZ2021062201000005

问题如下:

An analyst estimates that 20% of high-risk bonds will fail (go bankrupt). If she applies a bankruptcy prediction model, she finds that 70% of the bonds will receive a "good" rating, implying that they are less likely to fail. Of the bonds that failed, only 50% had a "good" rating.

Use Bayes' formula to predict the probability of failure given a "good"rating. (Hint, let P(A) be the probability of failure, P(B) be the probability of a "good" rating, P(B | A) be the likelihood of a "good" rating given failure, and P(A | B) be the likelihood of failure given a "good" rating.)

选项:

A.

5.7%

B.

14.3%

C.

28.6%

解释:

B is correct. With Bayes' formula, the probability of failure given a "good"rating is:

P(AB)=P(BA)P(B)P(A)P(A|B) = \frac{{P(B|A)}}{{P(B)}}P(A)

where

P(A) = 0.20 = probability of failure

P(B) =0.70 = probability of a "good" rating

P(B | A) =0.50 = probability of a "good" rating given failure

With these estimates, the probability of failure given a "good" rating is:

P(AB)=P(BA)P(B)P(A)=0.50.7×0.20=0.143P(A|B) = \frac{{P(B|A)}}{{P(B)}}P(A) = \frac{{0.5}}{{0.7}} \times 0.20 = 0.143

If the analyst uses the bankruptcy prediction model as a guide, the probability of failure declines from 20% to 14.3%.

知识点:Probability Concepts-Bayes' Formula

题目不是很明白,分不清条件了,上课的时候只对贝叶斯画图比较熟悉,单个条件下的不太熟

1 个答案

星星_品职助教 · 2023年03月13日

同学你好,

1)本题给出的是两个非条件概率,即P(fail)=20%,和P(good rating)=70%;以及一个条件概率,即P(good rating | fail)=50%。由于画图法只能解决一个非条件概率,两个条件概率的问题,这种题干设计无法通过画图解决。需要使用公式法。

2)公式法要比画图法简单的多。贝叶斯的公式和乘法法则的形式是一样的。乘法法则公式为P(AB)=P(A|B)×P(B)=P(B|A)×P(A)。把上述连等式的后两项重新组合一下,就可以得到P(A|B)=P(B|A) / P(B) × P(A)。

3)在实际题目中,不用去设定谁是A谁是B,题干即使给了hint也不用看,直接按照最后的问法写出来就可以。本题问的是 P(fail | good rating),直接可以对应写出公式为:

P(fail | good rating)=P(good rating | fail) / P(good rating) ×P(fail) ,直接根据题干条件代入数字,可得 50% / 70% × 20% = 0.1429。

  • 1

    回答
  • 2

    关注
  • 346

    浏览
相关问题

NO.PZ2021062201000005问题如下 analyst estimates th20% of high-risk bon will fail (go bankrupt). If she applies a bankruptprection mol, she fin th70% of the bon will receive a \"goo" rating, implying ththey are less likely to fail. Of the bon thfaile only 50% ha \"goo" rating. Use Bayes' formula to prethe probability of failure given a \"goo"rating. (Hint, let P(the probability of failure, P(the probability of a \"goo" rating, P(B | the likelihooof a \"goo" rating given failure, anP(A | the likelihooof failure given a \"goo" rating.) A.5.7%B.14.3%C.28.6% B is correct. With Bayes' formulthe probability of failure given a \"goo"rating isP(A∣B)=P(B∣A)P(B)P(A)P(A|= \frac{{P(B|A)}}{{P(B)}}P(A)P(A∣B)=P(B)P(B∣A)​P(A)where P(= 0.20 = probability of failure P(=0.70 = probability of a \"goo" rating P(B | =0.50 = probability of a \"goo" rating given failureWith these estimates, the probability of failure given a \"goo" rating isP(A∣B)=P(B∣A)P(B)P(A)=0.50.7×0.20=0.143P(A|= \frac{{P(B|A)}}{{P(B)}}P(= \frac{{0.5}}{{0.7}} \times 0.20 = 0.143P(A∣B)=P(B)P(B∣A)​P(A)=0.70.5​×0.20=0.143If the analyst uses the bankruptprection mol a gui, the probability of failure clines from 20% to 14.3%. 知识点Probability Concepts-Bayes' Formul您好,fall是20%,not fall是70%,加起来不等于100%啊,还差10%是什么

2023-09-19 10:25 2 · 回答

NO.PZ2021062201000005 问题如下 analyst estimates th20% of high-risk bon will fail (go bankrupt). If she applies a bankruptprection mol, she fin th70% of the bon will receive a \"goo" rating, implying ththey are less likely to fail. Of the bon thfaile only 50% ha \"goo" rating. Use Bayes' formula to prethe probability of failure given a \"goo"rating. (Hint, let P(the probability of failure, P(the probability of a \"goo" rating, P(B | the likelihooof a \"goo" rating given failure, anP(A | the likelihooof failure given a \"goo" rating.) A.5.7% B.14.3% C.28.6% B is correct. With Bayes' formulthe probability of failure given a \"goo"rating isP(A∣B)=P(B∣A)P(B)P(A)P(A|= \frac{{P(B|A)}}{{P(B)}}P(A)P(A∣B)=P(B)P(B∣A)​P(A)where P(= 0.20 = probability of failure P(=0.70 = probability of a \"goo" rating P(B | =0.50 = probability of a \"goo" rating given failureWith these estimates, the probability of failure given a \"goo" rating isP(A∣B)=P(B∣A)P(B)P(A)=0.50.7×0.20=0.143P(A|= \frac{{P(B|A)}}{{P(B)}}P(= \frac{{0.5}}{{0.7}} \times 0.20 = 0.143P(A∣B)=P(B)P(B∣A)​P(A)=0.70.5​×0.20=0.143If the analyst uses the bankruptprection mol a gui, the probability of failure clines from 20% to 14.3%. 知识点Probability Concepts-Bayes' Formul 这题也满足何老师课上讲的满足两个条件,为什么不能画图呢。 还是哪个表述不能满足。

2023-09-10 20:12 1 · 回答

NO.PZ2021062201000005问题如下 analyst estimates th20% of high-risk bon will fail (go bankrupt). If she applies a bankruptprection mol, she fin th70% of the bon will receive a \"goo" rating, implying ththey are less likely to fail. Of the bon thfaile only 50% ha \"goo" rating. Use Bayes' formula to prethe probability of failure given a \"goo"rating. (Hint, let P(the probability of failure, P(the probability of a \"goo" rating, P(B | the likelihooof a \"goo" rating given failure, anP(A | the likelihooof failure given a \"goo" rating.) A.5.7%B.14.3%C.28.6% B is correct. With Bayes' formulthe probability of failure given a \"goo"rating isP(A∣B)=P(B∣A)P(B)P(A)P(A|= \frac{{P(B|A)}}{{P(B)}}P(A)P(A∣B)=P(B)P(B∣A)​P(A)where P(= 0.20 = probability of failure P(=0.70 = probability of a \"goo" rating P(B | =0.50 = probability of a \"goo" rating given failureWith these estimates, the probability of failure given a \"goo" rating isP(A∣B)=P(B∣A)P(B)P(A)=0.50.7×0.20=0.143P(A|= \frac{{P(B|A)}}{{P(B)}}P(= \frac{{0.5}}{{0.7}} \times 0.20 = 0.143P(A∣B)=P(B)P(B∣A)​P(A)=0.70.5​×0.20=0.143If the analyst uses the bankruptprection mol a gui, the probability of failure clines from 20% to 14.3%. 知识点Probability Concepts-Bayes' Formul请问这样理解是哪里不对呢

2023-08-05 11:14 1 · 回答

NO.PZ2021062201000005 问题如下 analyst estimates th20% of high-risk bon will fail (go bankrupt). If she applies a bankruptprection mol, she fin th70% of the bon will receive a \"goo" rating, implying ththey are less likely to fail. Of the bon thfaile only 50% ha \"goo" rating. Use Bayes' formula to prethe probability of failure given a \"goo"rating. (Hint, let P(the probability of failure, P(the probability of a \"goo" rating, P(B | the likelihooof a \"goo" rating given failure, anP(A | the likelihooof failure given a \"goo" rating.) A.5.7% B.14.3% C.28.6% B is correct. With Bayes' formulthe probability of failure given a \"goo"rating isP(A∣B)=P(B∣A)P(B)P(A)P(A|= \frac{{P(B|A)}}{{P(B)}}P(A)P(A∣B)=P(B)P(B∣A)​P(A)where P(= 0.20 = probability of failure P(=0.70 = probability of a \"goo" rating P(B | =0.50 = probability of a \"goo" rating given failureWith these estimates, the probability of failure given a \"goo" rating isP(A∣B)=P(B∣A)P(B)P(A)=0.50.7×0.20=0.143P(A|= \frac{{P(B|A)}}{{P(B)}}P(= \frac{{0.5}}{{0.7}} \times 0.20 = 0.143P(A∣B)=P(B)P(B∣A)​P(A)=0.70.5​×0.20=0.143If the analyst uses the bankruptprection mol a gui, the probability of failure clines from 20% to 14.3%. 知识点Probability Concepts-Bayes' Formul

2023-07-28 17:57 1 · 回答

NO.PZ2021062201000005问题如下 analyst estimates th20% of high-risk bon will fail (go bankrupt). If she applies a bankruptprection mol, she fin th70% of the bon will receive a \"goo" rating, implying ththey are less likely to fail. Of the bon thfaile only 50% ha \"goo" rating. Use Bayes' formula to prethe probability of failure given a \"goo"rating. (Hint, let P(the probability of failure, P(the probability of a \"goo" rating, P(B | the likelihooof a \"goo" rating given failure, anP(A | the likelihooof failure given a \"goo" rating.) A.5.7%B.14.3%C.28.6% B is correct. With Bayes' formulthe probability of failure given a \"goo"rating isP(A∣B)=P(B∣A)P(B)P(A)P(A|= \frac{{P(B|A)}}{{P(B)}}P(A)P(A∣B)=P(B)P(B∣A)​P(A)where P(= 0.20 = probability of failure P(=0.70 = probability of a \"goo" rating P(B | =0.50 = probability of a \"goo" rating given failureWith these estimates, the probability of failure given a \"goo" rating isP(A∣B)=P(B∣A)P(B)P(A)=0.50.7×0.20=0.143P(A|= \frac{{P(B|A)}}{{P(B)}}P(= \frac{{0.5}}{{0.7}} \times 0.20 = 0.143P(A∣B)=P(B)P(B∣A)​P(A)=0.70.5​×0.20=0.143If the analyst uses the bankruptprection mol a gui, the probability of failure clines from 20% to 14.3%. 知识点Probability Concepts-Bayes' Formul, she fin th70% of the bon will receive a \"goo" rating, implying ththey are less likely to fail.然后请问下老师一般given后面是条件吧?

2023-06-19 08:48 1 · 回答