开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

上小学 · 2023年03月02日

请问这个题哪些给出的条件有用?为什么?

NO.PZ2020021204000012

问题如下:

The six-month and one-year zero rates are 3% and 4% (both compounded semi-annually) and a 1.5-year bond paying a coupon of 4% per annum semi-annually has a yield of 5%. What is the 1.5-year zero-coupon interest rate?

解释:

The price of the 1.5-year bond with a face value of 100 is:

21+0.05/2+2(1+0.05/2)2+1021+0.05/23=98.572\frac2{1+0.05/2}+\frac2{{(1+0.05/2)}^2}+\frac{102}{(1+0.05/2)^3}=98.572

If the 1.5-year zero rate is R we must have:

21+0.03/2+2(1+0.04/2)2+1021+R/23=98.572\frac2{1+0.03/2}+\frac2{{(1+0.04/2)}^2}+\frac{102}{(1+R/2)^3}=98.572

The solution to this equation is R = 0.05027. The 1.5-year zero rate is therefore 5.027%.

麻烦介绍下该类题型怎么做?谢谢

1 个答案

李坏_品职助教 · 2023年03月02日

嗨,爱思考的PZer你好:


题目问的是1.5年的zero rate是多少,为了求这个结果,我们需要知道6个月的、1年的零息利率,还有1.5年债券的价格和收益率,恰好题目都有提供。

遇到这种题目,先找最长期限的债券相关的数据,题目里给了1.5年附息债券的票面利率是4%,半年付息一次,也就是每次利息是2元。yield是5%。


先把1.5年债券定价的公式写出来:price = 利息/ (1+yield / 2) + 利息/ (1+yield / 2)^2 + (本金+利息)/ (1+yield/2)^3,这里的利息是2元,yield=5%,带入之后可以得出price = 98.572.


题目最后问的是1.5年的zero rate,我们需要把上面债券定价公式分母里面的yield全都替换为zero rate:

这样求出里面的R就行了。


遇到这种题目,先找最长期限的债券相关的数据,先把债券定价结果求出来,再把分母的利率去和题目问的利率结合起来。

----------------------------------------------
努力的时光都是限量版,加油!

  • 1

    回答
  • 0

    关注
  • 258

    浏览
相关问题

NO.PZ2020021204000012问题如下The six-month anone-yezero rates are 3% an4% (both compounsemi-annually) ana 1.5-yebonpaying a coupon of 4% per annum semi-annually ha yielof 5%. Whis the 1.5-yezero-coupon interest rate? The priof the 1.5-yebonwith a favalue of 100 is:21+0.05/2+2(1+0.05/2)2+102(1+0.05/2)3=98.572\frac2{1+0.05/2}+\frac2{{(1+0.05/2)}^2}+\frac{102}{(1+0.05/2)^3}=98.5721+0.05/22​+(1+0.05/2)22​+(1+0.05/2)3102​=98.572If the 1.5-yezero rate is R we must have:21+0.03/2+2(1+0.04/2)2+102(1+R/2)3=98.572\frac2{1+0.03/2}+\frac2{{(1+0.04/2)}^2}+\frac{102}{(1+R/2)^3}=98.5721+0.03/22​+(1+0.04/2)22​+(1+R/2)3102​=98.572The solution to this equation is R = 0.05027. The 1.5-yezero rate is therefore 5.027%.同上,为什么这两个rate会是不同的

2024-05-19 21:48 1 · 回答

NO.PZ2020021204000012问题如下The six-month anone-yezero rates are 3% an4% (both compounsemi-annually) ana 1.5-yebonpaying a coupon of 4% per annum semi-annually ha yielof 5%. Whis the 1.5-yezero-coupon interest rate? The priof the 1.5-yebonwith a favalue of 100 is:21+0.05/2+2(1+0.05/2)2+102(1+0.05/2)3=98.572\frac2{1+0.05/2}+\frac2{{(1+0.05/2)}^2}+\frac{102}{(1+0.05/2)^3}=98.5721+0.05/22​+(1+0.05/2)22​+(1+0.05/2)3102​=98.572If the 1.5-yezero rate is R we must have:21+0.03/2+2(1+0.04/2)2+102(1+R/2)3=98.572\frac2{1+0.03/2}+\frac2{{(1+0.04/2)}^2}+\frac{102}{(1+R/2)^3}=98.5721+0.03/22​+(1+0.04/2)22​+(1+R/2)3102​=98.572The solution to this equation is R = 0.05027. The 1.5-yezero rate is therefore 5.027%.这题里面的Yiel有效年利率的意思吗?为什么债券的定价,每一次现金流都用这个yiel折现?谢谢。

2024-05-11 18:48 1 · 回答

NO.PZ2020021204000012问题如下The six-month anone-yezero rates are 3% an4% (both compounsemi-annually) ana 1.5-yebonpaying a coupon of 4% per annum semi-annually ha yielof 5%. Whis the 1.5-yezero-coupon interest rate? The priof the 1.5-yebonwith a favalue of 100 is:21+0.05/2+2(1+0.05/2)2+102(1+0.05/2)3=98.572\frac2{1+0.05/2}+\frac2{{(1+0.05/2)}^2}+\frac{102}{(1+0.05/2)^3}=98.5721+0.05/22​+(1+0.05/2)22​+(1+0.05/2)3102​=98.572If the 1.5-yezero rate is R we must have:21+0.03/2+2(1+0.04/2)2+102(1+R/2)3=98.572\frac2{1+0.03/2}+\frac2{{(1+0.04/2)}^2}+\frac{102}{(1+R/2)^3}=98.5721+0.03/22​+(1+0.04/2)22​+(1+R/2)3102​=98.572The solution to this equation is R = 0.05027. The 1.5-yezero rate is therefore 5.027%.否则就直接100/(1+R)^1.5=P,求出R

2023-05-04 01:33 1 · 回答

NO.PZ2020021204000012 问题如下 The six-month anone-yezero rates are 3% an4% (both compounsemi-annually) ana 1.5-yebonpaying a coupon of 4% per annum semi-annually ha yielof 5%. Whis the 1.5-yezero-coupon interest rate? The priof the 1.5-yebonwith a favalue of 100 is:21+0.05/2+2(1+0.05/2)2+102(1+0.05/2)3=98.572\frac2{1+0.05/2}+\frac2{{(1+0.05/2)}^2}+\frac{102}{(1+0.05/2)^3}=98.5721+0.05/22​+(1+0.05/2)22​+(1+0.05/2)3102​=98.572If the 1.5-yezero rate is R we must have:21+0.03/2+2(1+0.04/2)2+102(1+R/2)3=98.572\frac2{1+0.03/2}+\frac2{{(1+0.04/2)}^2}+\frac{102}{(1+R/2)^3}=98.5721+0.03/22​+(1+0.04/2)22​+(1+R/2)3102​=98.572The solution to this equation is R = 0.05027. The 1.5-yezero rate is therefore 5.027%.

2022-11-02 21:19 1 · 回答