开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

🌊Yuri🌊 · 2022年11月30日

NO.PZ2021062201000003

问题如下:

A two-stock portfolio includes stocks with the following characteristics:


What is the standard deviation of portfolio returns?

选项:

A.

14.91%

B.

18.56%

C.

21.10%

解释:

B is correct. The covariance between the returns for the two stocks is

Cov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60.

The portfolio variance is:

σ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})

=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)

=12.96 +306.25 +25.2

=344.41

The portfolio standard deviation is:

σ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%

知识点:Probability Concepts

这道题我一点都没看懂。。。 题干中不是已经给出了各个标准差的占比,问题就是两个组合之前的标准差是多少,为什么不能直接两个相加呢?

1 个答案

星星_品职助教 · 2022年12月01日

同学你好,

题目中给出的是Stock1和2对应的标准差数值。也就是σ1=12%,σ2=25%。

通常而言,标准差不能直接相加,也不能和return一样直接用加权平均进行计算。需要根据如下的两资产组合的方差公式,逐项代入数值求得。

将求出来的组合方差开方,就得到了“ standard deviation of portfolio returns”

  • 1

    回答
  • 0

    关注
  • 331

    浏览
相关问题

NO.PZ2021062201000003 问题如下 A two-stoportfolio inclus stocks with the following characteristics: Whis the stanrviation of portfolio returns? A.14.91% B.18.56% C.21.10% B is correct. The covarianbetween the returns for the two stocks isCov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio varianisσ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})σ2Rp​=w12​σ2(R1​)+w22​σ2(R2​)+2w1​w2​Cov(R1​,R2​)=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)=12.96 +306.25 +25.2=344.41The portfolio stanrviation isσ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%σ2(RP​)=344.411/2=18.56% 知识点Probability Concepts 还是在portfolio里如果有AB两个产品的情况下,AB的covaraince就是portfolio的variance

2023-07-28 17:35 1 · 回答

NO.PZ2021062201000003 问题如下 A two-stoportfolio inclus stocks with the following characteristics: Whis the stanrviation of portfolio returns? A.14.91% B.18.56% C.21.10% B is correct. The covarianbetween the returns for the two stocks isCov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio varianisσ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})σ2Rp​=w12​σ2(R1​)+w22​σ2(R2​)+2w1​w2​Cov(R1​,R2​)=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)=12.96 +306.25 +25.2=344.41The portfolio stanrviation isσ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%σ2(RP​)=344.411/2=18.56% 知识点Probability Concepts 如上

2023-07-28 17:30 1 · 回答

NO.PZ2021062201000003 问题如下 A two-stoportfolio inclus stocks with the following characteristics: Whis the stanrviation of portfolio returns? A.14.91% B.18.56% C.21.10% B is correct. The covarianbetween the returns for the two stocks isCov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio varianisσ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})σ2Rp​=w12​σ2(R1​)+w22​σ2(R2​)+2w1​w2​Cov(R1​,R2​)=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)=12.96 +306.25 +25.2=344.41The portfolio stanrviation isσ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%σ2(RP​)=344.411/2=18.56% 知识点Probability Concepts 麻烦详细讲讲COV(R1,R2)的计算过程,谢谢

2023-03-12 22:24 1 · 回答

NO.PZ2021062201000003 问题如下 A two-stoportfolio inclus stocks with the following characteristics: Whis the stanrviation of portfolio returns? A.14.91% B.18.56% C.21.10% B is correct. The covarianbetween the returns for the two stocks isCov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio varianisσ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})σ2Rp​=w12​σ2(R1​)+w22​σ2(R2​)+2w1​w2​Cov(R1​,R2​)=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)=12.96 +306.25 +25.2=344.41The portfolio stanrviation isσ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%σ2(RP​)=344.411/2=18.56% 知识点Probability Concepts 我有点迷糊CV和COV的区别,可以麻烦下吗?

2023-01-03 00:24 2 · 回答

NO.PZ2021062201000003 问题如下 A two-stoportfolio inclus stocks with the following characteristics: Whis the stanrviation of portfolio returns? A.14.91% B.18.56% C.21.10% B is correct. The covarianbetween the returns for the two stocks isCov (R1,R2) = ρ (R1,R2) σ (R1) σ(R2) = 0.20 (12) (25) = 60. The portfolio varianisσ2Rp=w12σ2(R1)+w22σ2(R2)+2w1w2Cov(R1,R2){\sigma ^2}{R_p} = w_1^2{\sigma ^2}({R_1}) + w_2^2{\sigma ^2}({R_2}) + 2{w_1}{w_2}Cov({R_1},{R_2})σ2Rp​=w12​σ2(R1​)+w22​σ2(R2​)+2w1​w2​Cov(R1​,R2​)=(0.30)2(12)2+(0.7)2(25)2+2(0.30)(0.70)(60)=12.96 +306.25 +25.2=344.41The portfolio stanrviation isσ2(RP)=344.411/2=18.56%{\sigma ^2}({R_P}) = {344.41^{1/2}} = 18.56\%σ2(RP​)=344.411/2=18.56% 知识点Probability Concepts COV为什么是这样算的?跟视频里老师讲的不一样啊

2022-11-30 07:20 1 · 回答