开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

blade8932 · 2022年09月12日

这道题用排除法做的,思路应该没问题吧,A和B的选项都比较好算或者直接辨认,C的话还需要老老实实的计算(应该没有直接得出MAD的捷径吧)老师对吗?

NO.PZ2021061603000025

问题如下:

Annual returns and summary statistics for three funds are listed in the following exhibit:

The fund with the highest absolute dispersion is:

选项:

A.Fund PQR if the measure of dispersion is the range B.Fund XYZ if the measure of dispersion is the variance C.Fund ABC if the measure of dispersion is the mean absolute deviation

解释:

C is correct. The mean absolute deviation (MAD) of Fund ABC's returns is greater than the MAD of both of the other funds.

MDA=i=1nXiXˉnMDA = \frac{{\sum\limits_{i = 1}^n {\left| {{X_i} - \bar X} \right|} }}{n}, where Xˉ{\bar X} is the arithmetic mean of the series.

MAD for Fund ABC =

20(4)+23(4)+14(4)+5(4)+14(4)5=14.4%\frac{{\left| { - 20 - ( - 4)} \right| + \left| {23 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right| + \left| {5 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right|}}{5} = 14.4\%

MAD for Fund XYZ=

33(10.8)+12(10.8)+12(10.8)+8(10.8)+11(10.8)5=9.8%\frac{{\left| { - 33 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 8 - ( - 10.8)} \right| + \left| {11 - ( - 10.8)} \right|}}{5} = 9.8\%

MAD for Fund PQR=

14(5)+18(5)+6(5)+2(5)+3(5)5=8.8%\frac{{\left| { - 14 - ( - 5)} \right| + \left| { - 18 - ( - 5)} \right| + \left| {6 - ( - 5)} \right| + \left| { - 2 - ( - 5)} \right| + \left| {3 - ( - 5)} \right|}}{5} =8.8\%

A and B are incorrect because the range and variance of the three funds are as follows:


The numbers shown for variance are understood to be in "percent squared" terms so that when taking the square root, the result is standard deviation in percentage terms. Alternatively, by expressing standard deviation and variance in decimal form, one can avoid the issue of units. In decimal form, the variances for Fund ABC, Fund XYZ, and Fund PQR are 0.0317, 0.0243, and 0.0110, respectively.

RT

2 个答案

星星_品职助教 · 2022年09月14日

MAD的公式其实很好记。MAD全称是Mean Absolute Deviation,这里的每个单词都有代指。

其中deviation就是每个xi的取值和均值x bar的偏离程度(所以MAD这个指标衡量的是离散程度)。

Deviation写成数学符号就是xi - x bar。

现在希望衡量的是总的离散程度,所以就要把各个xi- x bar的值加起来。但是,由于xi可能高于x bar,也可能低于x bar,所以正负值会互相抵消。这是我们不希望看到的,因为无论是xi高于均值还是xi低于均值,都属于对于均值的偏离,抵消后没法合理反应出真实的偏离水平。

所以就要在xi - x bar的外面套一层绝对值,这样就可以去衡量数值上的偏离程度,这就是MAD中的absolute的含义。

最后再除以n,得到平均的偏离水平,这就是MAD中“mean”的含义。

所以通过MAD的名字就可以记住公式。

-----

方差的公式也很类似,同样还是因为deviation,即xi - x bar 有正有负,不希望抵消。所以除了绝对值之外的另一种处理就是给每一项都平方,然后再求这个平方的均值。所以方差也被称为 mean squared deviation。


星星_品职助教 · 2022年09月12日

同学你好,

对的,本题可以使用排除法,MAD只能手算。

但建议在练习的时候多练练MAD的公式,考试的时候不一定每道题都能用排除法。

blade8932 · 2022年09月14日

好的,谢谢老师。

  • 2

    回答
  • 0

    关注
  • 340

    浏览
相关问题

NO.PZ2021061603000025 问题如下 Annureturns ansummary statistifor three fun are listein the following exhibit:The funwith the highest absolute spersion is: A.FunPQR if the measure of spersion is the range B.FunXYZ if the measure of spersion is the varian C.FunAif the measure of spersion is the meabsolute viation C is correct. The meabsolute viation (MA of FunABC's returns is greater ththe Mof both of the other fun.MA∑i=1n∣Xi−Xˉ∣nM= \frac{{\sum\limits_{i = 1}^n {\left| {{X_i} - \bX} \right|} }}{n}MAni=1∑n​∣Xi​−Xˉ∣​, where Xˉ{\bX}Xˉ is the arithmetic meof the series.Mfor FunA=∣−20−(−4)∣+∣23−(−4)∣+∣−14−(−4)∣+∣5−(−4)∣+∣−14−(−4)∣5=14.4%\frac{{\left| { - 20 - ( - 4)} \right| + \left| {23 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right| + \left| {5 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right|}}{5} = 14.4\% 5∣−20−(−4)∣+∣23−(−4)∣+∣−14−(−4)∣+∣5−(−4)∣+∣−14−(−4)∣​=14.4% Mfor FunXYZ=∣−33−(−10.8)∣+∣−12−(−10.8)∣+∣−12−(−10.8)∣+∣−8−(−10.8)∣+∣11−(−10.8)∣5=9.8%\frac{{\left| { - 33 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 8 - ( - 10.8)} \right| + \left| {11 - ( - 10.8)} \right|}}{5} = 9.8\%5∣−33−(−10.8)∣+∣−12−(−10.8)∣+∣−12−(−10.8)∣+∣−8−(−10.8)∣+∣11−(−10.8)∣​=9.8% Mfor FunPQR=∣−14−(−5)∣+∣−18−(−5)∣+∣6−(−5)∣+∣−2−(−5)∣+∣3−(−5)∣5=8.8%\frac{{\left| { - 14 - ( - 5)} \right| + \left| { - 18 - ( - 5)} \right| + \left| {6 - ( - 5)} \right| + \left| { - 2 - ( - 5)} \right| + \left| {3 - ( - 5)} \right|}}{5} =8.8\% 5∣−14−(−5)∣+∣−18−(−5)∣+∣6−(−5)∣+∣−2−(−5)∣+∣3−(−5)∣​=8.8% A anB are incorrebecause the range anvarianof the three fun are follows: The numbers shown for varianare unrstooto in \"percent square" terms so thwhen taking the square root, the result is stanrviation in percentage terms. Alternatively, expressing stanrviation anvarianin cimform, one cavoithe issue of units. In cimform, the variances for FunABFunXYZ, anFunPQR are 0.0317, 0.0243, an0.0110, respectively. 我可以这样理解?只有meabsolute viation 才能计算absolute viationrange 及varian都不能计算absolute viation/ 与absolute viation无关所以 B 错, C 对

2024-11-16 13:47 1 · 回答

NO.PZ2021061603000025 问题如下 Annureturns ansummary statistifor three fun are listein the following exhibit:The funwith the highest absolute spersion is: A.FunPQR if the measure of spersion is the range B.FunXYZ if the measure of spersion is the varian C.FunAif the measure of spersion is the meabsolute viation C is correct. The meabsolute viation (MA of FunABC's returns is greater ththe Mof both of the other fun.MA∑i=1n∣Xi−Xˉ∣nM= \frac{{\sum\limits_{i = 1}^n {\left| {{X_i} - \bX} \right|} }}{n}MAni=1∑n​∣Xi​−Xˉ∣​, where Xˉ{\bX}Xˉ is the arithmetic meof the series.Mfor FunA=∣−20−(−4)∣+∣23−(−4)∣+∣−14−(−4)∣+∣5−(−4)∣+∣−14−(−4)∣5=14.4%\frac{{\left| { - 20 - ( - 4)} \right| + \left| {23 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right| + \left| {5 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right|}}{5} = 14.4\% 5∣−20−(−4)∣+∣23−(−4)∣+∣−14−(−4)∣+∣5−(−4)∣+∣−14−(−4)∣​=14.4% Mfor FunXYZ=∣−33−(−10.8)∣+∣−12−(−10.8)∣+∣−12−(−10.8)∣+∣−8−(−10.8)∣+∣11−(−10.8)∣5=9.8%\frac{{\left| { - 33 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 8 - ( - 10.8)} \right| + \left| {11 - ( - 10.8)} \right|}}{5} = 9.8\%5∣−33−(−10.8)∣+∣−12−(−10.8)∣+∣−12−(−10.8)∣+∣−8−(−10.8)∣+∣11−(−10.8)∣​=9.8% Mfor FunPQR=∣−14−(−5)∣+∣−18−(−5)∣+∣6−(−5)∣+∣−2−(−5)∣+∣3−(−5)∣5=8.8%\frac{{\left| { - 14 - ( - 5)} \right| + \left| { - 18 - ( - 5)} \right| + \left| {6 - ( - 5)} \right| + \left| { - 2 - ( - 5)} \right| + \left| {3 - ( - 5)} \right|}}{5} =8.8\% 5∣−14−(−5)∣+∣−18−(−5)∣+∣6−(−5)∣+∣−2−(−5)∣+∣3−(−5)∣​=8.8% A anB are incorrebecause the range anvarianof the three fun are follows: The numbers shown for varianare unrstooto in \"percent square" terms so thwhen taking the square root, the result is stanrviation in percentage terms. Alternatively, expressing stanrviation anvarianin cimform, one cavoithe issue of units. In cimform, the variances for FunABFunXYZ, anFunPQR are 0.0317, 0.0243, an0.0110, respectively. 不考虑实际意义的话,题目告诉3个数据集的标准差,要求3个数据集的MA大小,那么是否根据标准差和MA公式,直接通过n*S2=(MAn)^2即MA(S2/n)^1/2?如此,还可以推导出标准差更大的数据集其实MA更大?

2024-08-06 10:23 1 · 回答

NO.PZ2021061603000025 问题如下 Annureturns ansummary statistifor three fun are listein the following exhibit:The funwith the highest absolute spersion is: A.FunPQR if the measure of spersion is the range B.FunXYZ if the measure of spersion is the varian C.FunAif the measure of spersion is the meabsolute viation C is correct. The meabsolute viation (MA of FunABC's returns is greater ththe Mof both of the other fun.MA∑i=1n∣Xi−Xˉ∣nM= \frac{{\sum\limits_{i = 1}^n {\left| {{X_i} - \bX} \right|} }}{n}MAni=1∑n​∣Xi​−Xˉ∣​, where Xˉ{\bX}Xˉ is the arithmetic meof the series.Mfor FunA=∣−20−(−4)∣+∣23−(−4)∣+∣−14−(−4)∣+∣5−(−4)∣+∣−14−(−4)∣5=14.4%\frac{{\left| { - 20 - ( - 4)} \right| + \left| {23 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right| + \left| {5 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right|}}{5} = 14.4\% 5∣−20−(−4)∣+∣23−(−4)∣+∣−14−(−4)∣+∣5−(−4)∣+∣−14−(−4)∣​=14.4% Mfor FunXYZ=∣−33−(−10.8)∣+∣−12−(−10.8)∣+∣−12−(−10.8)∣+∣−8−(−10.8)∣+∣11−(−10.8)∣5=9.8%\frac{{\left| { - 33 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 8 - ( - 10.8)} \right| + \left| {11 - ( - 10.8)} \right|}}{5} = 9.8\%5∣−33−(−10.8)∣+∣−12−(−10.8)∣+∣−12−(−10.8)∣+∣−8−(−10.8)∣+∣11−(−10.8)∣​=9.8% Mfor FunPQR=∣−14−(−5)∣+∣−18−(−5)∣+∣6−(−5)∣+∣−2−(−5)∣+∣3−(−5)∣5=8.8%\frac{{\left| { - 14 - ( - 5)} \right| + \left| { - 18 - ( - 5)} \right| + \left| {6 - ( - 5)} \right| + \left| { - 2 - ( - 5)} \right| + \left| {3 - ( - 5)} \right|}}{5} =8.8\% 5∣−14−(−5)∣+∣−18−(−5)∣+∣6−(−5)∣+∣−2−(−5)∣+∣3−(−5)∣​=8.8% A anB are incorrebecause the range anvarianof the three fun are follows: The numbers shown for varianare unrstooto in \"percent square" terms so thwhen taking the square root, the result is stanrviation in percentage terms. Alternatively, expressing stanrviation anvarianin cimform, one cavoithe issue of units. In cimform, the variances for FunABFunXYZ, anFunPQR are 0.0317, 0.0243, an0.0110, respectively. 知道了range varian还有ma但我不知道怎么比较得出的?的意思能不能翻译下,谢谢老师。

2023-05-22 22:38 1 · 回答

NO.PZ2021061603000025 问题如下 Annureturns ansummary statistifor three fun are listein the following exhibit:The funwith the highest absolute spersion is: A.FunPQR if the measure of spersion is the range B.FunXYZ if the measure of spersion is the varian C.FunAif the measure of spersion is the meabsolute viation C is correct. The meabsolute viation (MA of FunABC's returns is greater ththe Mof both of the other fun.MA∑i=1n∣Xi−Xˉ∣nM= \frac{{\sum\limits_{i = 1}^n {\left| {{X_i} - \bX} \right|} }}{n}MAni=1∑n​∣Xi​−Xˉ∣​, where Xˉ{\bX}Xˉ is the arithmetic meof the series.Mfor FunA=∣−20−(−4)∣+∣23−(−4)∣+∣−14−(−4)∣+∣5−(−4)∣+∣−14−(−4)∣5=14.4%\frac{{\left| { - 20 - ( - 4)} \right| + \left| {23 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right| + \left| {5 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right|}}{5} = 14.4\% 5∣−20−(−4)∣+∣23−(−4)∣+∣−14−(−4)∣+∣5−(−4)∣+∣−14−(−4)∣​=14.4% Mfor FunXYZ=∣−33−(−10.8)∣+∣−12−(−10.8)∣+∣−12−(−10.8)∣+∣−8−(−10.8)∣+∣11−(−10.8)∣5=9.8%\frac{{\left| { - 33 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 8 - ( - 10.8)} \right| + \left| {11 - ( - 10.8)} \right|}}{5} = 9.8\%5∣−33−(−10.8)∣+∣−12−(−10.8)∣+∣−12−(−10.8)∣+∣−8−(−10.8)∣+∣11−(−10.8)∣​=9.8% Mfor FunPQR=∣−14−(−5)∣+∣−18−(−5)∣+∣6−(−5)∣+∣−2−(−5)∣+∣3−(−5)∣5=8.8%\frac{{\left| { - 14 - ( - 5)} \right| + \left| { - 18 - ( - 5)} \right| + \left| {6 - ( - 5)} \right| + \left| { - 2 - ( - 5)} \right| + \left| {3 - ( - 5)} \right|}}{5} =8.8\% 5∣−14−(−5)∣+∣−18−(−5)∣+∣6−(−5)∣+∣−2−(−5)∣+∣3−(−5)∣​=8.8% A anB are incorrebecause the range anvarianof the three fun are follows: The numbers shown for varianare unrstooto in \"percent square" terms so thwhen taking the square root, the result is stanrviation in percentage terms. Alternatively, expressing stanrviation anvarianin cimform, one cavoithe issue of units. In cimform, the variances for FunABFunXYZ, anFunPQR are 0.0317, 0.0243, an0.0110, respectively. 是不是只能把三个挨个算出来

2023-04-22 23:57 1 · 回答

NO.PZ2021061603000025问题如下 Annureturns ansummary statistifor three fun are listein the following exhibit:The funwith the highest absolute spersion is: A.FunPQR if the measure of spersion is the rangeB.FunXYZ if the measure of spersion is the varianceC.FunAif the measure of spersion is the meabsolute viation C is correct. The meabsolute viation (MA of FunABC's returns is greater ththe Mof both of the other fun.M=∑i=1n∣Xi−Xˉ∣nM = \frac{{\sum\limits_{i = 1}^n {\left| {{X_i} - \bX} \right|} }}{n}M=ni=1∑n​∣Xi​−Xˉ∣​, where Xˉ{\bX}Xˉ is the arithmetic meof the series.Mfor FunA=∣−20−(−4)∣+∣23−(−4)∣+∣−14−(−4)∣+∣5−(−4)∣+∣−14−(−4)∣5=14.4%\frac{{\left| { - 20 - ( - 4)} \right| + \left| {23 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right| + \left| {5 - ( - 4)} \right| + \left| { - 14 - ( - 4)} \right|}}{5} = 14.4\% 5∣−20−(−4)∣+∣23−(−4)∣+∣−14−(−4)∣+∣5−(−4)∣+∣−14−(−4)∣​=14.4% Mfor FunXYZ=∣−33−(−10.8)∣+∣−12−(−10.8)∣+∣−12−(−10.8)∣+∣−8−(−10.8)∣+∣11−(−10.8)∣5=9.8%\frac{{\left| { - 33 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 12 - ( - 10.8)} \right| + \left| { - 8 - ( - 10.8)} \right| + \left| {11 - ( - 10.8)} \right|}}{5} = 9.8\%5∣−33−(−10.8)∣+∣−12−(−10.8)∣+∣−12−(−10.8)∣+∣−8−(−10.8)∣+∣11−(−10.8)∣​=9.8% Mfor FunPQR=∣−14−(−5)∣+∣−18−(−5)∣+∣6−(−5)∣+∣−2−(−5)∣+∣3−(−5)∣5=8.8%\frac{{\left| { - 14 - ( - 5)} \right| + \left| { - 18 - ( - 5)} \right| + \left| {6 - ( - 5)} \right| + \left| { - 2 - ( - 5)} \right| + \left| {3 - ( - 5)} \right|}}{5} =8.8\% 5∣−14−(−5)∣+∣−18−(−5)∣+∣6−(−5)∣+∣−2−(−5)∣+∣3−(−5)∣​=8.8% A anB are incorrebecause the range anvarianof the three fun are follows: The numbers shown for varianare unrstooto in \"percent square" terms so thwhen taking the square root, the result is stanrviation in percentage terms. Alternatively, expressing stanrviation anvarianin cimform, one cavoithe issue of units. In cimform, the variances for FunABFunXYZ, anFunPQR are 0.0317, 0.0243, an0.0110, respectively. 请问这里range是怎么算的?

2023-01-11 12:00 1 · 回答